OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 485–490

Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy

Ru Wang, Huafeng Ding, Mustafa Mir, Krishnarao Tangella, and Gabriel Popescu  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 3, pp. 485-490 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present optical measurements of nanoscale red blood cell fluctuations obtained by highly sensitive quantitative phase imaging. These spatio-temporal fluctuations are modeled in terms of the bulk viscoelastic response of the cell. Relating the displacement distribution to the storage and loss moduli of the bulk has the advantage of incorporating all geometric and cortical effects into a single effective medium behavior. The results on normal cells indicate that the viscous modulus is much larger than the elastic one throughout the entire frequency range covered by the measurement, indicating fluid behavior.

© 2011 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Cell Studies

Original Manuscript: December 2, 2010
Revised Manuscript: January 7, 2011
Manuscript Accepted: January 29, 2011
Published: February 3, 2011

Ru Wang, Huafeng Ding, Mustafa Mir, Krishnarao Tangella, and Gabriel Popescu, "Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy," Biomed. Opt. Express 2, 485-490 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Mohandas and P. G. Gallagher, “Red cell membrane: past, present, and future,” Blood 112(10), 3939–3948 (2008). [CrossRef] [PubMed]
  2. R. Cotran, V. Kumar, T. Collins, and S. Robbins, Robbins Pathologic Basis of Disease (WB Saunders Company, 2004).
  3. G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2(11), 715–725 (2003). [CrossRef] [PubMed]
  4. D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994). [CrossRef] [PubMed]
  5. H. Engelhardt, H. Gaub, and E. Sackmann, “Viscoelastic properties of erythrocyte membranes in high-frequency electric fields,” Nature 307(5949), 378–380 (1984). [CrossRef] [PubMed]
  6. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003). [CrossRef]
  7. J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77(6), 3085–3095 (1999). [CrossRef] [PubMed]
  8. M. Puig-de-Morales, K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh, “Viscoelasticity of the human red blood cell,” J. Appl. Physiol. 293, 597–605 (2007).
  9. M. S. Amin, Y. K. Park, N. Lue, R. R. Dasari, K. Badizadegan, M. S. Feld, and G. Popescu, “Microrheology of red blood cell membranes using dynamic scattering microscopy,” Opt. Express 15(25), 17001–17009 (2007). [CrossRef] [PubMed]
  10. F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36, 1035–1047 (1975).
  11. S. Levin and R. Korenstein, “Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton,” Biophys. J. 60(3), 733–737 (1991). [CrossRef] [PubMed]
  12. D. H. Boal, U. Seifert, and A. Zilker, “Dual network model for red blood cell membranes,” Phys. Rev. Lett. 69(23), 3405–3408 (1992). [CrossRef] [PubMed]
  13. S. Tuvia, S. Levin, and R. Korenstein, “Correlation between local cell membrane displacements and filterability of human red blood cells,” FEBS Lett. 304(1), 32–36 (1992). [CrossRef] [PubMed]
  14. S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein, and S. Yedgar, “Cell membrane fluctuations are regulated by medium macroviscosity: evidence for a metabolic driving force,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 5045–5049 (1997). [CrossRef] [PubMed]
  15. N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003). [CrossRef] [PubMed]
  16. N. Gov, “Membrane undulations driven by force fluctuations of active proteins,” Phys. Rev. Lett. 93(26), 268104 (2004). [CrossRef] [PubMed]
  17. L. C. L. Lin and F. L. H. Brown, “Brownian dynamics in Fourier space: membrane simulations over long length and time scales,” Phys. Rev. Lett. 93(25), 256001 (2004). [CrossRef] [PubMed]
  18. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006). [CrossRef] [PubMed]
  19. L. C. L. Lin, N. Gov, and F. L. H. Brown, “Nonequilibrium membrane fluctuations driven by active proteins,” J. Chem. Phys. 124(7), 074903 (2006). [CrossRef] [PubMed]
  20. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008). [CrossRef] [PubMed]
  21. N. S. Gov and S. A. Safran, “Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects,” Biophys. J. 88(3), 1859–1874 (2005). [CrossRef] [PubMed]
  22. R. Lipowsky and M. Girardet, “Shape fluctuations of polymerized or solidlike membranes,” Phys. Rev. Lett. 65(23), 2893–2896 (1990). [CrossRef] [PubMed]
  23. A. J. Levine and F. C. MacKintosh, “Dynamics of viscoelastic membranes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 061606 (2002). [CrossRef] [PubMed]
  24. Y. K. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010). [CrossRef] [PubMed]
  25. M. A. Peterson, “Geometrical methods for the elasticity theory of membranes,” J. Math. Phys. 26(4), 711–717 (1985). [CrossRef]
  26. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics.methods in cell biology.” in Methods in Nano Cell Biology, B. P.Jena, ed. (Elsevier. 2008) pp. 87–115.
  27. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995). [CrossRef] [PubMed]
  28. J. D. Wan, W. D. Ristenpart, and H. A. Stone, “Dynamics of shear-induced ATP release from red blood cells,” Proc. Natl. Acad. Sci. U.S.A. 105(43), 16432–16437 (2008). [CrossRef] [PubMed]
  29. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  30. N. Gov, A. Zilman, and S. Safran, “Cytoskeleton confinement of red blood cell membrane fluctuations,” Biophys. J. 84, 486A (2003).
  31. A. G. Zilman and R. Granek, “Undulations and dynamic structure factor of membranes,” Phys. Rev. Lett. 77(23), 4788–4791 (1996). [CrossRef] [PubMed]
  32. G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002). [CrossRef] [PubMed]
  33. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  34. H. Ding, L. J. Millet, M. U. Gillette, and G. Popescu, “Actin-driven cell dynamics probed by Fourier transform light scattering,” Biomed. Opt. Express 1(1), 260–267 (2010). [CrossRef] [PubMed]
  35. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (M. Dekker, New York, 1992).
  36. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer-Verlag, New York, 1993).
  37. F. Gittes and F. C. MacKintosh, “Dynamic shear modulus of a semiflexible polymer network,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(2), R1241–R1244 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited