OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 520–533

Influence of tissue absorption and scattering on the depth dependent sensitivity of Raman fiber probes investigated by Monte Carlo simulations

Carina Reble, Ingo Gersonde, Chad A. Lieber, and Jürgen Helfmann  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 3, pp. 520-533 (2011)
http://dx.doi.org/10.1364/BOE.2.000520


View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a Monte Carlo model, which we use to calculate the depth dependent sensitivity or sampling volume of different single fiber and multi-fiber Raman probes. A two-layer skin model is employed to investigate the dependency of the sampling volume on the absorption and reduced scattering coefficients in the near infrared wavelength range (NIR). The shape of the sampling volume is mainly determined by the scattering coefficient and the wavelength dependency of absorption and scattering has only a small effect on the sampling volume of a typical fingerprint spectrum. An increase in the sampling depth in nonmelanoma skin cancer, compared to normal skin, is obtained.

© 2011 OSA

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: November 20, 2010
Revised Manuscript: January 30, 2011
Manuscript Accepted: February 2, 2011
Published: February 7, 2011

Citation
Carina Reble, Ingo Gersonde, Chad A. Lieber, and Jürgen Helfmann, "Influence of tissue absorption and scattering on the depth dependent sensitivity of Raman fiber probes investigated by Monte Carlo simulations," Biomed. Opt. Express 2, 520-533 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005). [CrossRef] [PubMed]
  2. N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Res. 68(11), 4424–4430 (2008). [CrossRef] [PubMed]
  3. M. D. Keller, E. M. Kanter, C. A. Lieber, S. K. Majumder, J. Hutchings, D. L. Ellis, R. B. Beaven, N. Stone, and A. Mahadevan-Jansen, “Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy,” Dis. Markers 25(6), 323–337 (2008). [PubMed]
  4. C. A. Lieber, S. K. Majumder, D. L. Ellis, D. D. Billheimer, and A. Mahadevan-Jansen, “In vivo nonmelanoma skin cancer diagnosis using Raman microspectroscopy,” Lasers Surg. Med. 40(7), 461–467 (2008). [CrossRef] [PubMed]
  5. A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. Bakker Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12(3), 034004 (2007). [CrossRef] [PubMed]
  6. J. Mo, W. Zheng, J. J. H. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81(21), 8908–8915 (2009). [CrossRef] [PubMed]
  7. E. M. Kanter, E. Vargis, S. Majumder, M. D. Keller, E. Woeste, G. G. Rao, and A. Mahadevan-Jansen, “Application of Raman spectroscopy for cervical dysplasia diagnosis,” J Biophotonics 2(1-2), 81–90 (2009). [CrossRef] [PubMed]
  8. M. G. Shim, B. C. Wilson, E. Marple, and M. Wach, “Study of Fiber-Optic Probes for in Vivo Medical Raman Spectroscopy,” Appl. Spectrosc. 53(6), 619–627 (1999). [CrossRef]
  9. N. D. Magee, J. S. Villaumie, E. T. Marple, M. Ennis, J. S. Elborn, and J. J. McGarvey, “Ex vivo diagnosis of lung cancer using a Raman miniprobe,” J. Phys. Chem. B 113(23), 8137–8141 (2009). [CrossRef] [PubMed]
  10. R. O. P. Draga, M. C. M. Grimbergen, P. L. M. Vijverberg, C. F. P. van Swol, T. G. N. Jonges, J. A. Kummer, and J. L. H. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82(14), 5993–5999 (2010). [CrossRef] [PubMed]
  11. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542–554 (2004). [CrossRef] [PubMed]
  12. Z. Huang, S. K. Teh, W. Zheng, J. Mo, K. Lin, X. Shao, K. Y. Ho, M. Teh, and K. G. Yeoh, “Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy,” Opt. Lett. 34(6), 758–760 (2009). [CrossRef] [PubMed]
  13. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1(1), 17–30 (2010). [CrossRef] [PubMed]
  14. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005). [CrossRef] [PubMed]
  15. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007). [CrossRef] [PubMed]
  16. M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009). [CrossRef] [PubMed]
  17. P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.) 134(6), 1058–1066 (2009). [CrossRef] [PubMed]
  18. J. R. Maher and A. J. Berger, “Determination of ideal offset for spatially offset Raman spectroscopy,” Appl. Spectrosc. 64(1), 61–65 (2010). [CrossRef] [PubMed]
  19. J. C. Day, R. Bennett, B. Smith, C. Kendall, J. Hutchings, G. M. Meaden, C. Born, S. Yu, and N. Stone, “A miniature confocal Raman probe for endoscopic use,” Phys. Med. Biol. 54(23), 7077–7087 (2009). [CrossRef] [PubMed]
  20. T. Katagiri, Y. S. Yamamoto, Y. Ozaki, Y. Matsuura, and H. Sato, “High axial resolution Raman probe made of a single hollow optical fiber,” Appl. Spectrosc. 63(1), 103–107 (2009). [CrossRef] [PubMed]
  21. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002). [CrossRef] [PubMed]
  22. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003). [CrossRef] [PubMed]
  23. A. M. K. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M. S. Feld, and G. L. Horowitz, “Blood analysis by Raman spectroscopy,” Opt. Lett. 27(22), 2004–2006 (2002). [CrossRef] [PubMed]
  24. P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005). [CrossRef] [PubMed]
  25. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations,” Opt. Express 16(17), 12726–12736 (2008). [PubMed]
  26. N. Everall, P. Matousek, N. MacLeod, K. L. Ronayne, and I. P. Clark, “Temporal and spatial resolution in transmission Raman spectroscopy,” Appl. Spectrosc. 64(1), 52–60 (2010). [CrossRef] [PubMed]
  27. M. D. Keller, R. H. Wilson, M.-A. Mycek, and A. Mahadevan-Jansen, “Monte Carlo model of spatially offset Raman spectroscopy for breast tumor margin analysis,” Appl. Spectrosc. 64(6), 607–614 (2010). [CrossRef] [PubMed]
  28. A. Ishimaru, “Wave Propagation and Scattering in Random Media,” IEEE Press, Oxford University Press: Oxford 1997.
  29. C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, “Quantitative Raman spectroscopy in turbid media,” J. Biomed. Opt. 15(3), 037016 (2010). [CrossRef] [PubMed]
  30. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005). [CrossRef]
  31. R. M. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999). [CrossRef] [PubMed]
  32. S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008). [CrossRef] [PubMed]
  33. G. Zonios and A. Dimou, “Light scattering spectroscopy of human skin in vivo,” Opt. Express 17(3), 1256–1267 (2009). [CrossRef] [PubMed]
  34. S.-H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009). [CrossRef] [PubMed]
  35. S. Jacques, http://omlc.ogi.edu/news/jan98/skinoptics.html , last accessed 15.5.2010.
  36. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006). [CrossRef] [PubMed]
  37. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006). [CrossRef] [PubMed]
  38. I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Anal. Chem. 81(11), 4233–4240 (2009). [CrossRef] [PubMed]
  39. R. Steponavičius and S. N. Thennadil, “Extraction of chemical information of suspensions using radiative transfer theory to remove multiple scattering effects: application to a model two-component system,” Anal. Chem. 81(18), 7713–7723 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 2 Fig. 1 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited