OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 552–567

Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult

Mathieu Dehaes, P. Ellen Grant, Danielle D. Sliva, Nadège Roche-Labarbe, Rudolph Pienaar, David A. Boas, Maria Angela Franceschini, and Juliette Selb  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 3, pp. 552-567 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The near infrared spectroscopy (NIRS) frequency-domain multi-distance (FD-MD) method allows for the estimation of optical properties in biological tissue using the phase and intensity of radiofrequency modulated light at different source-detector separations. In this study, we evaluated the accuracy of this method to retrieve the absorption coefficient of the brain at different ages. Synthetic measurements were generated with Monte Carlo simulations in magnetic resonance imaging (MRI)-based heterogeneous head models for four ages: newborn, 6 and 12 month old infants, and adult. For each age, we determined the optimal set of source-detector separations and estimated the corresponding errors. Errors arise from different origins: methodological (FD-MD) and anatomical (curvature, head size and contamination by extra-cerebral tissues). We found that the brain optical absorption could be retrieved with an error between 8–24% in neonates and infants, while the error increased to 19–44% in adults over all source-detector distances. The dominant contribution to the error was found to be the head curvature in neonates and infants, and the extra-cerebral tissues in adults.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Diffuse Optical Imaging

Original Manuscript: November 2, 2010
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 4, 2011
Published: February 11, 2011

Mathieu Dehaes, P. Ellen Grant, Danielle D. Sliva, Nadège Roche-Labarbe, Rudolph Pienaar, David A. Boas, Maria Angela Franceschini, and Juliette Selb, "Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult," Biomed. Opt. Express 2, 552-567 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Honda, E. Nakato, Y. Otsuka, S. Kanazawa, S. Kojima, M. K. Yamaguchi, and R. Kakigi, “How do infants perceive scrambled face?: A near-infrared spectroscopic study,” Brain Res. 1308, 137–146 (2010). [CrossRef] [PubMed]
  2. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, “Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration,” Dev. Sci. 11(3), 361–370 (2008). [CrossRef] [PubMed]
  3. T. Karen, G. Morren, D. Haensse, A. S. Bauschatz, H. U. Bucher, and M. Wolf, “Hemodynamic response to visual stimulation in newborn infants using functional near-infrared spectroscopy,” Hum. Brain Mapp. 29(4), 453–460 (2008). [CrossRef] [PubMed]
  4. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006). [CrossRef] [PubMed]
  5. K. Kotilahti, I. Nissilä, T. Näsi, L. Lipiäinen, T. Noponen, P. Meriläinen, M. Huotilainen, and V. Fellman, “Hemodynamic responses to speech and music in newborn infants,” Hum. Brain Mapp. 31(4), 595–603 (2010). [PubMed]
  6. P. Zaramella, F. Freato, A. Amigoni, S. Salvadori, P. Marangoni, A. Suppjei, B. Schiavo, and L. Chiandetti, “Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates,” Pediatr. Res. 49(2), 213–219 (2001). [CrossRef] [PubMed]
  7. M. Schecklmann, A. C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency,” Neuroimage 43(1), 147–155 (2008). [CrossRef] [PubMed]
  8. H. Bortfeld, E. Fava, and D. A. Boas, “Identifying cortical lateralization of speech processing in infants using near-infrared spectroscopy,” Dev. Neuropsychol. 34(1), 52–65 (2009). [CrossRef] [PubMed]
  9. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol. 44(6), 1543–1563 (1999). [CrossRef] [PubMed]
  10. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G. Diamond, D. A. Boas, K. Arvin, and P. E. Grant, “Assessment of infant brain development with frequency-domain near-infrared spectroscopy,” Pediatr. Res. 61(5 Pt 1), 546–551 (2007). [PubMed]
  11. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010). [CrossRef] [PubMed]
  12. P. E. Grant, N. Roche-Labarbe, A. Surova, G. Themelis, J. Selb, E. K. Warren, K. S. Krishnamoorthy, D. A. Boas, and M. A. Franceschini, “Increased cerebral blood volume and oxygen consumption in neonatal brain injury,” J. Cereb. Blood Flow Metab. 29(10), 1704–1713 (2009). [CrossRef] [PubMed]
  13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  14. G. Naulaers, G. Morren, S. Van Huffel, P. Casaer, and H. Devlieger, “Cerebral tissue oxygenation index in very premature infants,” Arch. Dis. Child. Fetal Neonatal Ed. 87(3), F189–F192 (2002). [CrossRef] [PubMed]
  15. T. S. Leung, I. Tachtsidis, M. Smith, D. T. Delpy, and C. E. Elwell, “Measurement of the absolute optical properties and cerebral blood volume of the adult human head with hybrid differential and spatially resolved spectroscopy,” Phys. Med. Biol. 51(3), 703–717 (2006). [CrossRef] [PubMed]
  16. G. Pichler, K. Grossauer, E. Peichl, A. Gaster, A. Berghold, G. Schwantzer, H. Zotter, W. Müller, and B. Urlesberger, “Combination of different noninvasive measuring techniques: a new approach to increase accuracy of peripheral near infrared spectroscopy,” J. Biomed. Opt. 14(1), 014014 (2009). [CrossRef] [PubMed]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  18. S. Fantini, M. Franceschini, J. Maier, S. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34(1), 32–42 (1995). [CrossRef]
  19. S. J. Matcher, “Closed-form expressions for obtaining the absorption and scattering coefficients of a turbid medium with time-resolved spectroscopy,” Appl. Opt. 36(31), 8298–8302 (1997). [CrossRef] [PubMed]
  20. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003). [CrossRef] [PubMed]
  21. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28(6), 1115–1124 (2001). [CrossRef] [PubMed]
  22. A. Pifferi, A. Torricelli, P. Taroni, and R. Cubeddu, “Reconstruction of absorber concentrations in a two-layer structure by use of multidistance time-resolved reflectance spectroscopy,” Opt. Lett. 26(24), 1963–1965 (2001). [CrossRef] [PubMed]
  23. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003). [CrossRef] [PubMed]
  24. F. Martelli, S. Del Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements,” Opt. Lett. 29(17), 2037–2039 (2004). [CrossRef] [PubMed]
  25. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12(17), 4103–4112 (2004). [CrossRef] [PubMed]
  26. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005). [CrossRef] [PubMed]
  27. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006). [CrossRef] [PubMed]
  28. L. Gagnon, C. Gauthier, R. D. Hoge, F. Lesage, J. Selb, and D. A. Boas, “Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system,” J. Biomed. Opt. 13(5), 054019 (2008). [CrossRef] [PubMed]
  29. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005). [CrossRef] [PubMed]
  30. J. Zhao, H. S. Ding, X. L. Hou, C. L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy,” J. Biomed. Opt. 10(2), 024028 (2005). [CrossRef] [PubMed]
  31. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9(1), 221–229 (2004). [CrossRef] [PubMed]
  32. D. Comelli, A. Bassi, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, F. Martelli, and G. Zaccanti, “In vivo time-resolved reflectance spectroscopy of the human forehead,” Appl. Opt. 46(10), 1717–1725 (2007). [CrossRef] [PubMed]
  33. E. Ohmae, Y. Ouchi, M. Oda, T. Suzuki, S. Nobesawa, T. Kanno, E. Yoshikawa, M. Futatsubashi, Y. Ueda, H. Okada, and Y. Yamashita, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements,” Neuroimage 29(3), 697–705 (2006). [CrossRef] [PubMed]
  34. A. Kienle, M. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37(4), 779–791 (1998). [CrossRef] [PubMed]
  35. F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model,” Phys. Med. Biol. 52(10), 2827–2843 (2007). [CrossRef] [PubMed]
  36. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, and D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42(16), 3095–3108 (2003). [CrossRef] [PubMed]
  37. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002). [PubMed]
  38. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003). [CrossRef] [PubMed]
  39. S. Prahl, “Optical absorption of hemoglobin,” http://omlcogiedu/spectra/hemoglobin/summary.html (2002).
  40. A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996). [CrossRef]
  41. S. Fantini, M. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128–2138 (1994). [CrossRef]
  42. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994). [CrossRef] [PubMed]
  43. S. Meyer, Data Analysis for Scientists and Engineers (Wiley, 1975).
  44. J. Heiskala, T. Neuvonen, P. E. Grant, and I. Nissilä, “Significance of tissue anisotropy in optical tomography of the infant brain,” Appl. Opt. 46(10), 1633–1640 (2007). [CrossRef] [PubMed]
  45. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited