OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 568–578

Diffuse optical cortical mapping using the boundary element method

Josias Elisee, Adam Gibson, and Simon Arridge  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 3, pp. 568-578 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (970 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cortical mapping, also called optical topography is a new medical imaging modality which allows the non-invasive investigation of the outer layers of the cortex. This technique is challenging and the geometry of the subject is very often over-simplified. We aim here to localize activated regions of an anatomically accurate brain. A Boundary Element Method is used for the forward model. The reconstruction of perturbations in the absorption coefficient is demonstrated in a geometrically realistic simulation and in vivo. These results show that diffuse optical imaging of the head can provide reliable activity maps when anatomical data is available.

© 2011 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(110.0113) Imaging systems : Imaging through turbid media
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: November 9, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 25, 2011
Published: February 11, 2011

Josias Elisee, Adam Gibson, and Simon Arridge, "Diffuse optical cortical mapping using the boundary element method," Biomed. Opt. Express 2, 568-578 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42(16), 3054–3062 (2003). [CrossRef] [PubMed]
  2. R. Weissleder, M. J. Pittet, “Imaging in the era of molecular oncology,” Nature 452(7187), 580–589 (2008). [CrossRef] [PubMed]
  3. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  4. T. Shinba, M. Nagano, N. Kariya, K. Ogawa, T. Shinozaki, S. Shimosato, Y. Hoshi, “Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia,” Biol. Psychiatry 55(2), 154–164 (2004). [CrossRef] [PubMed]
  5. T. Suto, M. Fukuda, M. Ito, T. Uehara, M. Mikuni, “Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study,” Biol. Psychiatry 55(5), 501–511 (2004). [CrossRef] [PubMed]
  6. A. A. Baird, J. Kagan, T. Gaudette, K. A. Walz, N. Hershlag, D. A. Boas, “Frontal lobe activation during object permanence: data from near-infrared spectroscopy,” Neuroimage 16(4), 1120–1126 (2002). [CrossRef] [PubMed]
  7. Y. Hoshi, S.-J. Chen, “Regional cerebral blood flow changes associated with emotions in children,” Pediatr. Neurol. 27(4), 275–281 (2002). [CrossRef] [PubMed]
  8. R. P. Kennan, D. Kim, A. Maki, H. Koizumi, R. T. Constable, “Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI,” Hum. Brain Mapp. 16(3), 183–189 (2002). [CrossRef] [PubMed]
  9. H. Koizumi, A. Maki, and T. Yamamoto, “Optical topography: Practical problems and novel applications,” in Biomedical Topical Meeting (Optical Society of America, 2002), p. MC1.
  10. M. Peña, A. Maki, D. Kovacić, G. Dehaene-Lambertz, H. Koizumi, F. Bouquet, J. Mehler, “Sounds and silence: an optical topography study of language recognition at birth,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11702–11705 (2003). [CrossRef] [PubMed]
  11. K. R. Liu, D. S. Borrett, A. Cheng, D. Gasparro, H. C. Kwan, “Near-infrared spectroscopy study of language activated hyper- and hypo-oxygenation in human prefrontal cortex,” Int. J. Neurosci. 118(5), 657–666 (2008). [CrossRef] [PubMed]
  12. T. Ota, K. Kamada, K. Kawai, M. Yumoto, and N. Saito, “Noninvasive determination of language dominance using multiple functional brain imaging,” Neuroimage 47, S120 (2009), Organization for Human Brain Mapping 2009 Annual Meeting.
  13. H. Sato, T. Takeuchi, K. L. Sakai, “Temporal cortex activation during speech recognition: an optical topography study,” Cognition 73(3), B55–B66 (1999). [CrossRef] [PubMed]
  14. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  15. N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005). [CrossRef]
  16. T. J. Germon, P. D. Evans, N. J. Barnett, P. Wall, A. R. Manara, R. J. Nelson, “Cerebral near infrared spectroscopy: emitter-detector separation must be increased,” Br. J. Anaesth. 82(6), 831–837 (1999). [PubMed]
  17. P. W. McCormick, M. Stewart, M. G. Goetting, M. Dujovny, G. Lewis, J. I. Ausman, “Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics,” Crit. Care Med. 19(1), 89–97 (1991). [CrossRef] [PubMed]
  18. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14(12), 5418–5432 (2006). [CrossRef] [PubMed]
  19. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47(23), 4155–4166 (2002). [CrossRef] [PubMed]
  20. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, J. C. Hebden, “Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate,” Neuroimage 30(2), 521–528 (2006). [CrossRef] [PubMed]
  21. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation,” J. Biomed. Opt. 12(3), 034019 (2007). [CrossRef] [PubMed]
  22. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008). [CrossRef] [PubMed]
  23. H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Macdonald, H. Obrig, J. Steinbrink, R. Erdmann, and O. Raitza, “A time-domain nir brain imager applied in functional stimulation experiments,” in Photon Migration and Diffuse-Light Imaging II (Optical Society of America, 2005), p. WA5.
  24. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997). [CrossRef] [PubMed]
  25. Y. Fukui, Y. Ajichi, E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models,” Appl. Opt. 42(16), 2881–2887 (2003). [CrossRef] [PubMed]
  26. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43(15), 3037–3047 (2004). [CrossRef] [PubMed]
  27. T. S. Leung, C. E. Elwell, D. T. Delpy, “Estimation of cerebral oxy- and deoxy-haemoglobin concentration changes in a layered adult head model using near-infrared spectroscopy and multivariate statistical analysis,” Phys. Med. Biol. 50(24), 5783–5798 (2005). [CrossRef] [PubMed]
  28. T. Nakahachi, R. Ishii, M. Iwase, L. Canuet, H. Takahashi, R. Kurimoto, K. Ikezawa, M. Azechi, R. Sekiyama, E. Honaga, C. Uchiumi, M. Iwakiri, N. Motomura, M. Takeda, “Frontal activity during the digit symbol substitution test determined by multichannel near-infrared spectroscopy,” Neuropsychobiology 57(4), 151–158 (2008). [CrossRef] [PubMed]
  29. F. Abdelnour, B. Schmidt, T. J. Huppert, “Topographic localization of brain activation in diffuse optical imaging using spherical wavelets,” Phys. Med. Biol. 54(20), 6383–6413 (2009). [CrossRef] [PubMed]
  30. F. Abdelnour, T. Huppert, “A random-effects model for group-level analysis of diffuse optical brain imaging,” Biomed. Opt. Express 2(1), 1–25 (2011). [CrossRef]
  31. B. Fischl, M. I. Sereno, A. M. Dale, “Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system,” Neuroimage 9(2), 195–207 (1999). [CrossRef] [PubMed]
  32. Y. Tong, B. Frederick, “Using fmri analysis tools (fsl/freesurfer) to analyze near-infrared imaging of the brain,” Neuroimage 47, S58 (2009) [presented at Organization for Human Brain Mapping 2009 Annual Meeting].
  33. A. Custo, D. A. Boas, D. Tsuzuki, I. Dan, R. Mesquita, B. Fischl, W. E. L. Grimson, W. Wells, “Anatomical atlas-guided diffuse optical tomography of brain activation,” Neuroimage 49(1), 561–567 (2010). [CrossRef] [PubMed]
  34. M. Caffini, A. Torricelli, R. Cubeddu, A. Custo, J. Dubb, and D. A. Boas, “Validating an anatomical brain atlas for analyzing nirs measurements of brain activation,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2010), p. JMA87.
  35. D. Yao, “High-resolution EEG mapping: an equivalent charge-layer approach,” Phys. Med. Biol. 48(13), 1997–2011 (2003). [CrossRef] [PubMed]
  36. B. He, X. Zhang, J. Lian, H. Sasaki, D. Wu, V. L. Towle, “Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects’ magnetic resonance images,” Neuroimage 16(3), 564–576 (2002). [CrossRef] [PubMed]
  37. J. O. Ollikainen, M. Vaukhonen, P. A. Karjalainen, J. P. Kaipio, “A new computational approach for cortical imaging,” IEEE Trans. Med. Imaging 20(4), 325–332 (2001). [CrossRef] [PubMed]
  38. J. Elisee, A. Gibson, S. Arridge, “Combination of boundary element method and finite element method in diffuse optical tomography,” IEEE Trans. Biomed. Eng. 57(11), 2737–2745 (2010). [CrossRef] [PubMed]
  39. J. Sikora, A. Zacharopoulos, A. Douiri, M. Schweiger, L. Horesh, S. R. Arridge, J. Ripoll, “Diffuse photon propagation in multilayered geometries,” Phys. Med. Biol. 51(3), 497–516 (2006). [CrossRef] [PubMed]
  40. M. Schweiger, S. R. Arridge, I. Nissilä, “Gauss-Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50(10), 2365–2386 (2005). [CrossRef] [PubMed]
  41. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34(34), 8026–8037 (1995). [CrossRef] [PubMed]
  42. A. Tizzard, L. Horesh, R. J. Yerworth, D. S. Holder, R. H. Bayford, “Generating accurate finite element meshes for the forward model of the human head in EIT,” Physiol. Meas. 26(2), S251–S261 (2005). [CrossRef] [PubMed]
  43. J. C. Hebden, T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17(11), 2926–2933 (2007). [CrossRef] [PubMed]
  44. A. P. Gibson, J. Riley, M. Schweiger, J. C. Hebden, S. R. Arridge, D. T. Delpy, “A method for generating patient-specific finite element meshes for head modelling,” Phys. Med. Biol. 48(4), 481–495 (2003). [CrossRef] [PubMed]
  45. E. Widmaier, H. Raff, and K. Strang, Vander’s Human Physiology: the Mechanisms of Body Function (McGraw-Hill Higher Education, 2008), p. 306.
  46. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt. 10(1), 011013 (2005). [CrossRef] [PubMed]
  47. M. Butti, D. Contini, E. Molteni, M. Caffini, L. Spinelli, G. Baselli, A. M. Bianchi, S. Cerutti, R. Cubeddu, A. Torricelli, “Effect of prolonged stimulation on cerebral hemodynamic: a time-resolved fNIRS study,” Med. Phys. 36(9), 4103–4114 (2009). [CrossRef] [PubMed]
  48. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, Oxygen Transport to Tissue XXXI, Vol. 662 of Biomedical and Life Sciences (Springer, 2010), pp. 143–148.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited