OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 665–679

Hybrid use of early and quasi-continuous wave photons in time-domain tomographic imaging for improved resolution and quantitative accuracy

Zhi Li and Mark Niedre  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 3, pp. 665-679 (2011)
http://dx.doi.org/10.1364/BOE.2.000665


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurement of early-photons (EPs) from a pulsed laser source has been shown to improve imaging resolution versus continuous wave (CW) systems in diffuse optical tomography (DOT) and fluorescence mediated tomography (FMT). However, EP systems also have reduced noise performance versus CW systems since EP measurements require temporal rejection of large numbers of transmitted photons. In this work, we describe a ‘hybrid data set’ (HDS) image reconstruction approach, the goal of which was to produce a final image that retained the resolution and noise advantages of EP and CW data sets, respectively. Here, CW data was first reconstructed to produce a quantitatively accurate ‘initial guess’ intermediate image, and then this was refined with EP data to yield a higher resolution final image. We performed a series of studies with simulated data to test the resolution, quantitative accuracy and detection sensitivity of the approach. We showed that in principle it was possible to produce final images that retained the bulk of the resolution and quantitative accuracy of EP and CW images, respectively, but the HDS approach did not improve the instrument sensitivity compared to EP data alone.

© 2011 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: December 23, 2010
Revised Manuscript: February 7, 2011
Manuscript Accepted: February 15, 2011
Published: February 23, 2011

Citation
Zhi Li and Mark Niedre, "Hybrid use of early and quasi-continuous wave photons in time-domain tomographic imaging for improved resolution and quantitative accuracy," Biomed. Opt. Express 2, 665-679 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35(6), 2443–2451 (2008). [CrossRef] [PubMed]
  2. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005). [CrossRef] [PubMed]
  3. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30(2), 235–247 (2003). [CrossRef] [PubMed]
  4. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006). [CrossRef] [PubMed]
  5. D. Piao, H. Xie, W. Zhang, J. S. Krasinski, G. Zhang, H. Dehghani, and B. W. Pogue, “Endoscopic, rapid near-infrared optical tomography,” Opt. Lett. 31(19), 2876–2878 (2006). [CrossRef] [PubMed]
  6. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002). [CrossRef] [PubMed]
  7. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004). [CrossRef] [PubMed]
  8. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003). [CrossRef] [PubMed]
  9. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers 18(5-6), 313–337 (2002). [PubMed]
  10. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26(6), 1444–1457 (2009). [CrossRef] [PubMed]
  11. G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34(4), 1405–1411 (2007). [CrossRef] [PubMed]
  12. M. J. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010). [CrossRef] [PubMed]
  13. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008). [CrossRef] [PubMed]
  14. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, “Fluorescence tomographic imaging in turbid media using early-arriving photons and Laplace transforms,” Proc. Natl. Acad. Sci. U.S.A. 94(16), 8783–8788 (1997). [CrossRef] [PubMed]
  15. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009). [CrossRef] [PubMed]
  16. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000). [CrossRef] [PubMed]
  17. A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27(8), 1152–1163 (2008). [CrossRef] [PubMed]
  18. V. Y. Soloviev, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Combined reconstruction of fluorescent and optical parameters using time-resolved data,” Appl. Opt. 48(1), 28–36 (2009). [CrossRef] [PubMed]
  19. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010). [CrossRef] [PubMed]
  20. N. Valim, J. L. Brock, and M. J. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010). [CrossRef] [PubMed]
  21. J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express 17(22), 19566–19579 (2009). [CrossRef] [PubMed]
  22. E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46(4), 1117–1130 (2001). [CrossRef] [PubMed]
  23. A. T. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33(5), 470–472 (2008). [CrossRef] [PubMed]
  24. A. T. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30(24), 3347–3349 (2005). [CrossRef] [PubMed]
  25. F. Gao, H. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41(4), 778–791 (2002). [CrossRef] [PubMed]
  26. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999). [CrossRef] [PubMed]
  27. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47(1), N1 (2002). [CrossRef] [PubMed]
  28. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000). [CrossRef] [PubMed]
  29. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008). [CrossRef] [PubMed]
  30. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54(8), 2493–2509 (2009). [CrossRef] [PubMed]
  31. J. Bouza Domínguez and Y. Bérubé-Lauzière, “Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects,” Appl. Opt. 49(8), 1414–1429 (2010). [CrossRef] [PubMed]
  32. W. Cai, M. Lax, and R. R. Alfano, “Analytical solution of the polarized photon transport equation in an infinite uniform medium using cumulant expansion,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(1 Pt 2), 016606 (2001). [PubMed]
  33. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997). [CrossRef] [PubMed]
  34. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited