OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 680–695

Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study

Mathieu Dehaes, Louis Gagnon, Frédéric Lesage, Mélanie Pélégrini-Issac, Alexandre Vignaud, Romain Valabrègue, Reinhard Grebe, Fabrice Wallois, and Habib Benali  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 3, pp. 680-695 (2011)
http://dx.doi.org/10.1364/BOE.2.000680


View Full Text Article

Enhanced HTML    Acrobat PDF (4960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse optical imaging (DOI) is a non invasive technique allowing the recovery of hemodynamic changes in the brain. Due to the diffusive nature of photon propagation in turbid media and the fact that cerebral tissues are located around 1.5 cm under the adult human scalp, DOI measurements are subject to partial volume errors. DOI measurements are also sensitive to large pial vessels because oxygenated and deoxygenated hemoglobin are the dominant chromophores in the near infrared window. In this study, the effect of the extra-cerebral vasculature in proximity of the sagittal sinus was investigated for its impact on DOI measurements simulated over the human adult visual cortex. Numerical Monte Carlo simulations were performed on two specific models of the human head derived from magnetic resonance imaging (MRI) scans. The first model included the extra-cerebral vasculature in which constant hemoglobin concentrations were assumed while the second did not. The screening effect of the vasculature was quantified by comparing recovered hemoglobin changes from each model for different optical arrays and regions of activation. A correction factor accounting for the difference between the recovered and the simulated hemoglobin changes was computed in each case. The results show that changes in hemoglobin concentration are better estimated when the extra-cerebral vasculature is modeled and the correction factors obtained in this case were at least 1.4-fold lower. The effect of the vasculature was also examined in a high-density diffuse optical tomography configuration. In this case, the difference between changes in hemoglobin concentration recovered with each model was reduced down to 10%.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: December 16, 2010
Revised Manuscript: February 10, 2011
Manuscript Accepted: February 10, 2011
Published: February 23, 2011

Citation
Mathieu Dehaes, Louis Gagnon, Frédéric Lesage, Mélanie Pélégrini-Issac, Alexandre Vignaud, Romain Valabrègue, Reinhard Grebe, Fabrice Wallois, and Habib Benali, "Quantitative investigation of the effect of the extra-cerebral vasculature in diffuse optical imaging: a simulation study," Biomed. Opt. Express 2, 680-695 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. du Plessis, “Near-infrared spectroscopy for the in vivo study of cerebral hemodynamics and oxygenation,” Curr. Opin. Pediatr. 7(6), 632–639 (1995). [PubMed]
  2. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O. W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green,” J. Neurol. Neurosurg. Psychiatry 75(1), 38–42 (2004). [PubMed]
  3. G. Blasdel and D. Campbell, “Functional retinotopy of monkey visual cortex,” J. Neurosci. 21(20), 8286–8301 (2001). [PubMed]
  4. M. P. Vanni, J. Provost, C. Casanova, and F. Lesage, “Bimodal modulation and continuous stimulation in optical imaging to map direction selectivity,” Neuroimage 49(2), 1416–1431 (2010). [CrossRef] [PubMed]
  5. D. S. Kim, Y. Matsuda, K. Ohki, A. Ajima, and S. Tanaka, “Geometrical and topological relationships between multiple functional maps in cat primary visual cortex,” Neuroreport 10(12), 2515–2522 (1999). [CrossRef] [PubMed]
  6. C. Gias, N. Hewson-Stoate, M. Jones, D. Johnston, J. E. Mayhew, and P. J. Coffey, “Retinotopy within rat primary visual cortex using optical imaging,” Neuroimage 24(1), 200–206 (2005). [CrossRef] [PubMed]
  7. T. Kato, A. Kamei, S. Takashima, and T. Ozaki, “Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy,” J. Cereb. Blood Flow Metab. 13(3), 516–520 (1993). [PubMed]
  8. A. Villringer, J. Planck, S. Stodieck, K. Bötzel, L. Schleinkofer, and U. Dirnagl, “Noninvasive assessment of cerebral hemodynamics and tissue oxygenation during activation of brain cell function in human adults using near infrared spectroscopy,” Adv. Exp. Med. Biol. 345, 559–565 (1994). [PubMed]
  9. J. H. Meek, C. E. Elwell, M. J. Khan, J. Romaya, J. S. Wyatt, D. T. Delpy, and S. Zeki, “Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy,” Proc. Biol. Sci. 261(1362), 351–356 (1995). [CrossRef] [PubMed]
  10. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007). [CrossRef] [PubMed]
  11. R. Wenzel, H. Obrig, J. Ruben, K. Villringer, A. Thiel, J. Bernading, U. Dirnagl, and A. Villringer, “Cerebral blood oxygenation changes induced by visual stimulation in humans,” J. Biomed. Opt. 1(4), 399–404 (1996). [CrossRef]
  12. R. Wenzel, P. Wobst, H. H. Heekeren, K. K. Kwong, S. A. Brandt, M. Kohl, H. Obrig, U. Dirnagl, and A. Villringer, “Saccadic suppression induces focal hypooxygenation in the occipital cortex,” J. Cereb. Blood Flow Metab. 20(7), 1103–1110 (2000). [CrossRef] [PubMed]
  13. B. R. White and J. P. Culver, “Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging,” Neuroimage 49(1), 568–577 (2010). [CrossRef] [PubMed]
  14. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009). [CrossRef] [PubMed]
  15. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  16. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17(2), 719–731 (2002). [CrossRef] [PubMed]
  17. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  18. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [CrossRef] [PubMed]
  19. R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: the balloon model,” Magn. Reson. Med. 39(6), 855–864 (1998). [CrossRef] [PubMed]
  20. R. D. Hoge, M. A. Franceschini, R. J. Covolan, T. Huppert, J. B. Mandeville, and D. A. Boas, “Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI,” Neuroimage 25(3), 701–707 (2005). [CrossRef] [PubMed]
  21. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003). [CrossRef] [PubMed]
  22. C. Zhou, “In-vivo optical imaging and spectroscopy of cerebral hemodynamics,” Ph.D. thesis, University of Pennsylvania (2007).
  23. T. S. Leung, I. Tachtsidis, M. Tisdall, M. Smith, D. T. Delpy, and C. E. Elwell, “Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy,” Appl. Opt. 46(10), 1604–1614 (2007). [CrossRef] [PubMed]
  24. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22(8), 1209–1217 (1995). [CrossRef] [PubMed]
  25. P. Moran, “A flow velocityzeugmatographic interlace for NMR imaging in humans,” Magn. Reson. Med. 1, 197–203 (1982).
  26. C. L. Dumoulin, S. P. Souza, M. F. Walker, and W. Wagle, “Three-dimensional phase contrast angiography,” Magn. Reson. Med. 9(1), 139–149 (1989). [CrossRef] [PubMed]
  27. S. Prahl, “Optical Absorption of Hemoglobin,” http://omlcogiedu/spectra/hemoglobin/ summaryhtml (2002).
  28. R. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge Univ. Press, 2001).
  29. A. Yaroslavsky, I. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, “Optical properties of blood in the nearinfrared spectral range,” Proc. SPIE 2678, 314–324 (1996). [CrossRef]
  30. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  31. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006). [CrossRef] [PubMed]
  32. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002). [PubMed]
  33. S. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41 (1999). [CrossRef]
  34. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997). [CrossRef] [PubMed]
  35. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, S. R. Arridge, and J. P. Kaipio, “Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions,” Phys. Med. Biol. 50(20), 4913–4930 (2005). [CrossRef] [PubMed]
  36. M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988). [CrossRef] [PubMed]
  37. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage 13(1), 76–90 (2001). [CrossRef] [PubMed]
  38. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38(12), 1859–1876 (1993). [CrossRef] [PubMed]
  39. J. M. Lina, M. Dehaes, C. Matteau-Pelletier, and F. Lesage, “Complex wavelets applied to diffuse optical spectroscopy for brain activity detection,” Opt. Express 16(2), 1029–1050 (2008). [CrossRef] [PubMed]
  40. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009). [CrossRef] [PubMed]
  41. R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Proc. Camb. Philos. Soc. 51(03), 406–413 (1955). [CrossRef]
  42. F. Fabbri, A. Sassaroli, M. E. Henry, and S. Fantini, “Optical measurements of absorption changes in two-layered diffusive media,” Phys. Med. Biol. 49(7), 1183–1201 (2004). [CrossRef] [PubMed]
  43. Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, “Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy,” J. Biomed. Opt. 10(6), 064032 (2005). [CrossRef] [PubMed]
  44. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006). [CrossRef] [PubMed]
  45. J. Markham, B. R. White, B. W. Zeff, and J. P. Culver, “Blind identification of evoked human brain activity with independent component analysis of optical data,” Hum. Brain Mapp. 30(8), 2382–2392 (2009). [CrossRef] [PubMed]
  46. J. Heiskala, P. Hiltunen, and I. Nissilä, “Significance of background optical properties, time-resolved information and optode arrangement in diffuse optical imaging of term neonates,” Phys. Med. Biol. 54(3), 535–554 (2009). [CrossRef] [PubMed]
  47. J. Frahm, K. D. Merboldt, W. Hänicke, A. Kleinschmidt, and H. Boecker, “Brain or vein--oxygenation or flow? On signal physiology in functional MRI of human brain activation,” NMR Biomed. 7(1-2), 45–53 (1994). [CrossRef] [PubMed]
  48. J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. Rosen, and R. M. Weisskoff, “The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo,” Magn. Reson. Med. 34(1), 4–10 (1995). [CrossRef] [PubMed]
  49. T. Q. Duong, E. Yacoub, G. Adriany, X. Hu, K. Ugurbil, J. T. Vaughan, H. Merkle, and S. G. Kim, “High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T,” Magn. Reson. Med. 48(4), 589–593 (2002). [CrossRef] [PubMed]
  50. T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Signal nonlinearity in fMRI: a comparison between BOLD and MION,” IEEE Trans. Med. Imaging 22(5), 636–644 (2003). [CrossRef] [PubMed]
  51. J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005). [CrossRef] [PubMed]
  52. Y. Zheng, D. Johnston, J. Berwick, D. Chen, S. Billings, and J. Mayhew, “A three-compartment model of the hemodynamic response and oxygen delivery to brain,” Neuroimage 28(4), 925–939 (2005). [CrossRef] [PubMed]
  53. T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, “A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation,” J. Cereb. Blood Flow Metab. 27(6), 1262–1279 (2007). [CrossRef] [PubMed]
  54. Y. Tong and B. D. Frederick, “Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain,” Neuroimage 53(2), 553–564 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited