OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 717–738

Optical properties of the mouse eye

Ying Geng, Lee Anne Schery, Robin Sharma, Alfredo Dubra, Kamran Ahmad, Richard T. Libby, and David R. Williams  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 4, pp. 717-738 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye.

© 2011 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7324) Vision, color, and visual optics : Visual optics, comparative animal models
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: December 21, 2010
Revised Manuscript: February 23, 2011
Manuscript Accepted: February 24, 2011
Published: February 28, 2011

Ying Geng, Lee Anne Schery, Robin Sharma, Alfredo Dubra, Kamran Ahmad, Richard T. Libby, and David R. Williams, "Optical properties of the mouse eye," Biomed. Opt. Express 2, 717-738 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res. 25(1), 21–31 (1985). [CrossRef] [PubMed]
  2. C. Schmucker and F. Schaeffel, “A paraxial schematic eye model for the growing C57BL/6 mouse,” Vision Res. 44(16), 1857–1867 (2004). [CrossRef] [PubMed]
  3. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  4. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  5. D. C. Gray, R. Wolfe, B. P. Gee, D. Scoles, Y. Geng, B. D. Masella, A. Dubra, S. Luque, D. R. Williams, and W. H. Merigan, “In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells,” Invest. Ophthalmol. Vis. Sci. 49(1), 467–473 (2008). [CrossRef] [PubMed]
  6. J. I. Morgan,, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008). [CrossRef] [PubMed]
  7. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett. 32(6), 659–661 (2007). [CrossRef] [PubMed]
  8. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci. 50(12), 5872–5879 (2009). [CrossRef] [PubMed]
  9. C. Alt, D. P. Biss, N. Tajouri, T. C. Jakobs, and C. P. Lin, “An adaptive-optics scanning laser ophthalmoscope for imaging murine retinal microstructure,” Proc. SPIE 7550, 75501 (2010).
  10. P. Artal, P. Herreros de Tejada, C. Muñoz Tedó, and D. G. Green, “Retinal image quality in the rodent eye,” Vis. Neurosci. 15(04), 597–605 (1998). [CrossRef] [PubMed]
  11. E. L. Irving, M. L. Kisilak, K. M. Clements, and M. C. W. Campbell, “Refractive error and optical image quality in three strains of albino rats,” Invest. Ophthalmol. Visual Sci. 46,000–000 (2005).
  12. M. Bird, M. L. Kisilak, and M. C. W. Campbell, “Optical quality of the rat eye,” Invest. Ophthalmol. Visual Sci. 48000–000 (2007).
  13. E. G. de la Cera, G. Rodríguez, L. Llorente, F. Schaeffel, and S. Marcos, “Optical aberrations in the mouse eye,” Vision Res. 46(16), 2546–2553 (2006). [CrossRef] [PubMed]
  14. O. Lardiere, R. Conan, C. Bradley, K. Jackson, and G. Herriot, “A laser guide star wavefront sensor bench demonstrator for TMT,” Opt. Express 16(8), 5527–5543 (2008). [CrossRef] [PubMed]
  15. S. L. Polyak, The vertebrate visual system (University of Chicago Press., Chicago, 1957).
  16. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef] [PubMed]
  17. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994). [CrossRef] [PubMed]
  18. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64(9), 1200–1210 (1974). [CrossRef]
  19. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000). [CrossRef] [PubMed]
  20. A. N. S. Institute, “Methods for Reporting Optical Aberrations of Eyes,” in ANSI Z80.28 (2004), pp. 19–28.
  21. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in Biomedical Image Registration, B. Fischer, B. Dawant, and C. Lorenz, eds. (Springer, Berlin, 2010), pp. 60–71.
  22. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5522–5528 (2006). [CrossRef] [PubMed]
  23. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007). [CrossRef] [PubMed]
  24. O. P. Kocaoglu, S. R. Uhlhorn, E. Hernandez, R. A. Juarez, R. Will, J. M. Parel, and F. Manns, “Simultaneous fundus imaging and optical coherence tomography of the mouse retina,” Invest. Ophthalmol. Vis. Sci. 48(3), 1283–1289 (2007). [CrossRef] [PubMed]
  25. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  26. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005). [CrossRef] [PubMed]
  27. A. Hughes, “A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations,” Vision Res. 19(11), 1273–1275 (1979). [CrossRef] [PubMed]
  28. C. J. Jeon, E. Strettoi, and R. H. Masland, “The major cell populations of the mouse retina,” J. Neurosci. 18(21), 8936–8946 (1998). [PubMed]
  29. E. Soucy, Y. S. Wang, S. Nirenberg, J. Nathans, and M. Meister, “A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina,” Neuron 21(3), 481–493 (1998). [CrossRef] [PubMed]
  30. S. S. Nikonov, R. Kholodenko, J. Lem, and E. N. Pugh., “Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings,” J. Gen. Physiol. 127(4), 359–374 (2006). [CrossRef] [PubMed]
  31. J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997). [CrossRef] [PubMed]
  32. J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, Adaptive Optics for Vision Science (Wiley-Interscience, 2006), pp. 68–69.
  33. A. Dubra, “Wavefront sensor and wavefront corrector matching in adaptive optics,” Opt. Express 15(6), 2762–2769 (2007). [CrossRef] [PubMed]
  34. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181(3), 576–593 (1965). [PubMed]
  35. R. Sabesan and G. Yoon (Institute of Optics, University of Rochester, Rochester, New York, USA, personal communication).
  36. N. Putnam (School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, USA, personal communication).
  37. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18(4), 3458–3476 (2010). [CrossRef] [PubMed]
  38. A. Dubra (Flaum Eye Institute, University of Rochester, Rochester,New York, USA, personal communication, 2010).
  39. M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168(931), 605–606 (1970). [CrossRef] [PubMed]
  40. J. Tejedor and P. de la Villa, “Refractive changes induced by form deprivation in the mouse eye,” Invest. Ophthalmol. Vis. Sci. 44(1), 32–36 (2003). [CrossRef] [PubMed]
  41. V. A. Barathi, V. G. Boopathi, E. P. Yap, and R. W. Beuerman, “Two models of experimental myopia in the mouse,” Vision Res. 48(7), 904–916 (2008). [CrossRef] [PubMed]
  42. T. V. Tkatchenko and A. V. Tkatchenko, “Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice,” J. Neurosci. Methods 193(1), 67–71 (2010). [CrossRef] [PubMed]
  43. A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res. 23(12), 1351–1363 (1983). [CrossRef] [PubMed]
  44. M. Millodot and J. Sivak, “Hypermetropia of small animals and chromatic aberration,” Vision Res. 18(1), 125–126 (1978). [CrossRef] [PubMed]
  45. A. Hughes, “The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration,” Vision Res. 19(11), 1293–1294 (1979). [CrossRef] [PubMed]
  46. K. R. Huxlin, G. Yoon, L. Nagy, J. Porter, and D. Williams, “Monochromatic ocular wavefront aberrations in the awake-behaving cat,” Vision Res. 44(18), 2159–2169 (2004). [CrossRef] [PubMed]
  47. F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, “Measurement of refractive state and deprivation myopia in two strains of mice,” Optom. Vis. Sci. 81(2), 99–110 (2004). [CrossRef] [PubMed]
  48. M. Choi, S. Weiss, F. Schaeffel, A. Seidemann, H. C. Howland, B. Wilhelm, and H. Wilhelm, “Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor),” Optom. Vis. Sci. 77(10), 537–548 (2000). [CrossRef] [PubMed]
  49. A. Roorda, M. C. Campbell, and W. R. Bobier, “Geometrical theory to predict eccentric photorefraction intensity profiles in the human eye,” J. Opt. Soc. Am. A 12(8), 1647–1656 (1995). [CrossRef] [PubMed]
  50. A. Roorda, M. C. Campbell, and W. R. Bobier, “Slope-based eccentric photorefraction: theoretical analysis of different light source configurations and effects of ocular aberrations,” J. Opt. Soc. Am. A 14(10), 2547–2556 (1997). [CrossRef] [PubMed]
  51. L. Gianfranceschi, A. Fiorentini, and L. Maffei, “Behavioural visual acuity of wild type and bcl2 transgenic mouse,” Vision Res. 39(3), 569–574 (1999). [CrossRef] [PubMed]
  52. G. T. Prusky and R. M. Douglas, “Developmental plasticity of mouse visual acuity,” Eur. J. Neurosci. 17(1), 167–173 (2003). [CrossRef] [PubMed]
  53. C. Schmucker, M. Seeliger, P. Humphries, M. Biel, and F. Schaeffel, “Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function,” Invest. Ophthalmol. Vis. Sci. 46(1), 398–407 (2005). [CrossRef] [PubMed]
  54. J. D. Pettigrew, B. Dreher, C. S. Hopkins, M. J. McCall, and M. Brown, “Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity,” Brain Behav. Evol. 32(1), 39–56 (1988). [CrossRef] [PubMed]
  55. U. C. Dräger and J. F. Olsen, “Ganglion cell distribution in the retina of the mouse,” Invest. Ophthalmol. Vis. Sci. 20(3), 285–293 (1981). [PubMed]
  56. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003). [CrossRef] [PubMed]
  57. G. A. Horridge, “The compound eye of insects,” Sci. Am. 237(1), 108–120 (1977). [CrossRef] [PubMed]
  58. A. W. Snyder, S. B. Laughlin, and D. G. Stavenga, “Information capacity of eyes,” Vision Res. 17(10), 1163–1175 (1977). [CrossRef] [PubMed]
  59. A. W. Snyder, T. R. J. Bossomaier, and A. Hughes, “Optical image quality and the cone mosaic,” Science 231(4737), 499–501 (1986). [CrossRef] [PubMed]
  60. W. M. Harmening, M. A. Vobig, P. Walter, and H. Wagner, “Ocular aberrations in barn owl eyes,” Vision Res. 47(23), 2934–2942 (2007). [CrossRef] [PubMed]
  61. W. M. Harmening, P. Nikolay, J. Orlowski, and H. Wagner, “Spatial contrast sensitivity and grating acuity of barn owls,” J. Vis. 9(7), 13 (2009). [CrossRef] [PubMed]
  62. M. W. Seeliger, S. C. Beck, N. Pereyra-Muñoz, S. Dangel, J. Y. Tsai, U. F. Luhmann, S. A. van de Pavert, J. Wijnholds, M. Samardzija, A. Wenzel, E. Zrenner, K. Narfström, E. Fahl, N. Tanimoto, N. Acar, and F. Tonagel, “In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy,” Vision Res. 45(28), 3512–3519 (2005). [CrossRef] [PubMed]
  63. M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur, C. Bellman, and J. A. Sahel, “High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse,” Vision Res. 46(8-9), 1336–1345 (2006). [CrossRef] [PubMed]
  64. M. K. Walsh and H. A. Quigley, “In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice,” J. Neurosci. Methods 169(1), 214–221 (2008). [CrossRef] [PubMed]
  65. C. K. Leung, J. D. Lindsey, J. G. Crowston, C. Lijia, S. Chiang, and R. N. Weinreb, “Longitudinal profile of retinal ganglion cell damage after optic nerve crush with blue-light confocal scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 49(11), 4898–4902 (2008). [CrossRef] [PubMed]
  66. G. J. McCormick, J. Porter, I. G. Cox, and S. MacRae, “Higher-order aberrations in eyes with irregular corneas after laser refractive surgery,” Ophthalmology 112(10), 1699–1709 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited