OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 739–747

Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms

Rodrigo Aviles-Espinosa, George Filippidis, Craig Hamilton, Graeme Malcolm, Kurt J. Weingarten, Thomas Südmeyer, Yohan Barbarin, Ursula Keller, Susana I.C.O Santos, David Artigas, and Pablo Loza-Alvarez  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 4, pp. 739-747 (2011)
http://dx.doi.org/10.1364/BOE.2.000739


View Full Text Article

Enhanced HTML    Acrobat PDF (1505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laser—VECSELs), to be used for nonlinear microscopy. The SDL is modelocked using a quantum-dot semiconductor saturable absorber mirror (SESAM), delivering an average output power of 287 mW, with 1.5 ps pulses at 500 MHz and a central wavelength of 965 nm. Specifically, despite the fact of having long pulses and high repetition rates, we demonstrate the potential of this laser for Two-Photon Excited Fluorescence (TPEF) imaging of in vivo Caenorhabditis elegans (C. elegans) expressing Green Fluorescent Protein (GFP) in a set of neuronal processes and cell bodies. Efficient TPEF imaging is achieved due to the fact that this wavelength matches the peak of the two-photon action cross section of this widely used fluorescent marker. The SDL extended versatility is shown by presenting Second Harmonic Generation images of pharynx, uterus, body wall muscles and its potential to be used to excite other different commercial dyes. Importantly this non-expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(140.3538) Lasers and laser optics : Lasers, pulsed
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 15, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: February 24, 2011
Published: February 28, 2011

Citation
Rodrigo Aviles-Espinosa, George Filippidis, Craig Hamilton, Graeme Malcolm, Kurt J. Weingarten, Thomas Südmeyer, Yohan Barbarin, Ursula Keller, Susana I.C.O Santos, David Artigas, and Pablo Loza-Alvarez, "Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms," Biomed. Opt. Express 2, 739-747 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996). [CrossRef] [PubMed]
  3. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  4. U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein. Laser Physics and Applications. Subvolume B: Laser Systems. Part I, G. Herziger, H. Weber, and R. Proprawe, eds. (Springer Verlag, Heidelberg, 2007), pp. 33–167
  5. D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, “Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser with an antiresonant Fabry-Perot saturable absorber,” Opt. Lett. 19(24), 2143–2145 (1994). [CrossRef] [PubMed]
  6. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, “High-average-power diode-pumped femtosecond Cr:LiSAF lasers,” Appl. Phys. B 65(2), 235–243 (1997). [CrossRef]
  7. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21(7), 486–488 (1996). [CrossRef] [PubMed]
  8. K. Svoboda, W. Denk, W. H. Knox, and S. Tsuda, “Two-photon-excitation scanning microscopy of living neurons with a saturable Bragg reflector mode-locked diode-pumped Cr:LiSrAlFl laser,” Opt. Lett. 21(17), 1411–1413 (1996). [CrossRef] [PubMed]
  9. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005). [CrossRef] [PubMed]
  10. S. Sakadžic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kaertner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16(25), 20848–20863 (2008). [CrossRef] [PubMed]
  11. G. Robertson, D. Armstrong, M. J. P. Dymott, A. I. Ferguson, and G. L. Hogg, “Two-photon fluorescence microscopy with a diode-pumped Cr:LiSAF laser,” Appl. Opt. 36(12), 2481–2483 (1997). [CrossRef] [PubMed]
  12. R. Aviles-Espinosa, S. I. Santos, A. Brodschelm, W. G. Kaenders, C. Alonso-Ortega, D. Artigas, and P. Loza-Alvarez, “Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis,” J. Biomed. Opt. 15(4), 046020 (2010). [CrossRef] [PubMed]
  13. S. Tang, J. Liu, T. B. Krasieva, Z. P. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt. 14(3), 030508 (2009). [CrossRef] [PubMed]
  14. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt. 38(36), 7393–7397 (1999). [CrossRef] [PubMed]
  15. M. Kuramoto, N. Kitajima, H. C. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett. 32(18), 2726–2728 (2007). [CrossRef] [PubMed]
  16. K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express 15(5), 2454–2458 (2007). [CrossRef] [PubMed]
  17. H. Yokoyama, H. C. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14(8), 3467–3471 (2006). [CrossRef] [PubMed]
  18. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999). [CrossRef] [PubMed]
  19. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999). [CrossRef] [PubMed]
  20. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006). [CrossRef]
  21. A. McWilliam, A. A. Lagatsky, C. T. A. Brown, W. Sibbett, A. E. Zhukov, V. M. Ustinov, A. P. Vasil’ev, and E. U. Rafailov, “Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser,” Opt. Lett. 31(10), 1444–1446 (2006). [CrossRef] [PubMed]
  22. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  23. D. J. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “Growth parameter optimization for fast quantum dot SESAMs,” Opt. Express 16(23), 18646–18656 (2008). [CrossRef] [PubMed]
  24. E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc. 217(3), 200–204 (2005). [CrossRef] [PubMed]
  25. G. A. Blab, P. H. M. Lommerse, L. Cognet, G. S. Harms, and T. Schmidt, “Two-photon excitation action cross-sections of the autofluorescent proteins,” Chem. Phys. Lett. 350(1-2), 71–77 (2001). [CrossRef]
  26. R. Heim, A. B. Cubitt, and R. Y. Tsien, “Improved green fluorescence,” Nature 373(6516), 663–664 (1995). [CrossRef] [PubMed]
  27. Developmental Recourse for Biophysical Imaging Optoelectronics, “Two photon action cross sections” (Cornel University, 2010), http://www.drbio.cornell.edu/cross_sections.html
  28. I. A. Hope, C. elegans a Practical Approach (Oxford University Press, 1999), Chap. 2.
  29. Education in Microscopy and Digital Imaging, “Suitable dyes for multi-photon” (Zeiss virtual campus 2011), http://www.zeiss.com/C12567BE00472A5C/EmbedTitelIntern/MultiphotonSuitableDyes/$File/MultiphotonSuitableDyes.pdf
  30. S. Psilodimitrakopoulos, V. Petegnief, G. Soria, I. Amat-Roldan, D. Artigas, A. M. Planas, and P. Loza-Alvarez, “Estimation of the effective orientation of the SHG source in primary cortical neurons,” Opt. Express 17(16), 14418–14425 (2009). [CrossRef] [PubMed]
  31. T. R. Neu, U. Kuhlicke, and J. R. Lawrence, “Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms,” Appl. Environ. Microbiol. 68(2), 901–909 (2002). [CrossRef] [PubMed]
  32. B. J. Baker, H. Mutoh, D. Dimitrov, W. Akemann, A. Perron, Y. Iwamoto, L. Jin, L. B. Cohen, E. Y. Isacoff, V. A. Pieribone, T. Hughes, and T. Knöpfel, “Genetically encoded fluorescent sensors of membrane potential,” Brain Cell Biol. 36(1-4), 53–67 (2008). [CrossRef] [PubMed]
  33. A. Khatchatouriants, A. Lewis, Z. Rothman, L. Loew, and M. Treinin, “GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans,” Biophys. J. 79(5), 2345–2352 (2000). [CrossRef] [PubMed]
  34. J. White and E. Stelzer, “Photobleaching GFP reveals protein dynamics inside live cells,” Trends Cell Biol. 9(2), 61–65 (1999). [CrossRef] [PubMed]
  35. M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited