OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 771–780

Tyrosinase as a dual reporter gene for both photoacoustic and magnetic resonance imaging

Robert J. Paproski, Alexander E. Forbrich, Keith Wachowicz, Mary M. Hitt, and Roger J. Zemp  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 4, pp. 771-780 (2011)
http://dx.doi.org/10.1364/BOE.2.000771


View Full Text Article

Enhanced HTML    Acrobat PDF (1871 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reporter genes are useful scientific tools for analyzing promoter activity, transfection efficiency, and cell migration. The current study has validated the use of tyrosinase (involved in melanin production) as a dual reporter gene for magnetic resonance and photoacoustic imaging. MCF-7 cells expressing tyrosinase appear brown due to melanin. Magnetic resonance imaging of tyrosinase-expressing MCF-7 cells in 300 μL plastic tubes displayed a 34 to 40% reduction in T1 compared to normal MCF-7 cells when cells were incubated with 250 μM ferric citrate. Photoacoustic imaging of tyrosinase-expressing MCF-7 cells in 700 μm plastic tubes displayed a 20 to 57-fold increase in photoacoustic signal compared to normal MCF-7 cells. The photoacoustic signal from tyrosinase-expressing MCF-7 cells was significantly greater than blood at 650 nm, suggesting that tyrosinase-expressing cells can be differentiated from the vasculature with in vivo photoacoustic imaging. The imaging results suggest that tyrosinase is a useful reporter gene for both magnetic resonance and photoacoustic imaging.

© 2011 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Functional Imaging

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 25, 2011
Manuscript Accepted: March 1, 2011
Published: March 2, 2011

Citation
Robert J. Paproski, Alexander E. Forbrich, Keith Wachowicz, Mary M. Hitt, and Roger J. Zemp, "Tyrosinase as a dual reporter gene for both photoacoustic and magnetic resonance imaging," Biomed. Opt. Express 2, 771-780 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol. 15(10), 961–964 (1997). [CrossRef] [PubMed]
  2. L. F. Greer and A. A. Szalay, “Imaging of light emission from the expression of luciferases in living cells and organisms: a review,” Luminescence 17(1), 43–74 (2002). [CrossRef] [PubMed]
  3. W. S. Oetting, “The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): A model for understanding the molecular biology of melanin formation,” Pigment Cell Res. 13(5), 320–325 (2000). [CrossRef] [PubMed]
  4. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008). [CrossRef] [PubMed]
  5. H. Alfke, H. Stöppler, F. Nocken, J. T. Heverhagen, B. Kleb, F. Czubayko, and K. J. Klose, “In vitro MR imaging of regulated gene expression,” Radiology 228(2), 488–492 (2003). [CrossRef] [PubMed]
  6. R. Weissleder, M. Simonova, A. Bogdanova, S. Bredow, W. S. Enochs, and A. Bogdanov., “MR imaging and scintigraphy of gene expression through melanin induction,” Radiology 204(2), 425–429 (1997). [PubMed]
  7. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009). [CrossRef] [PubMed]
  8. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 034032 (2006). [CrossRef] [PubMed]
  9. R. M. Weight, J. A. Viator, P. S. Dale, C. W. Caldwell, and A. E. Lisle, “Photoacoustic detection of metastatic melanoma cells in the human circulatory system,” Opt. Lett. 31(20), 2998–3000 (2006). [CrossRef] [PubMed]
  10. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  11. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009). [CrossRef] [PubMed]
  12. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” J. Biomed. Opt. 12(2), 020504 (2007). [CrossRef] [PubMed]
  13. L. Li, H. F. Zhang, R. J. Zemp, K. Maslov, and L. Wang, “Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy,” J. Innov. Opt. Health Sci. 01(02), 207–215 (2008). [CrossRef] [PubMed]
  14. R. J. Zemp, L. Li, and L. V. Wang, “Photoacoustic imaging of gene expression,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang and V. Lihong, eds. (CRC, Boca Raton, Florida, 2009).
  15. E. K. Insko and L. Bolinger, “Mapping of the radiofrequency field,” J. Magn. Reson. A 103(1), 82–85 (1993). [CrossRef]
  16. A. M. Ponce, B. L. Viglianti, D. Yu, P. S. Yarmolenko, C. R. Michelich, J. Woo, M. B. Bally, and M. W. Dewhirst, “Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects,” J. Natl. Cancer Inst. 99(1), 53–63 (2007). [CrossRef] [PubMed]
  17. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009). [CrossRef] [PubMed]
  18. J. C. Ranasinghesagara and R. J. Zemp, “Combined photoacoustic and oblique-incidence diffuse reflectance system for quantitative photoacoustic imaging in turbid media,” J. Biomed. Opt. 15(4), 046016 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 5 Fig. 2
 
Fig. 3 Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited