OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 838–849

Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth

Can Fang, David Brokl, Randall E. Brand, and Yang Liu  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 4, pp. 838-849 (2011)
http://dx.doi.org/10.1364/BOE.2.000838


View Full Text Article

Enhanced HTML    Acrobat PDF (1213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The in vivo assessment of superficial tissue has shown great promise in many biomedical applications. Significant efforts have been expended in designing compact fiber-optic probes with short tissue penetration depth targeting the superficial epithelium. In this paper, we present a compact and simple two-channel fiber-optic probe with superior depth selectivity for the superficial tissue. This probe employs a high-index ball-lens with an optimized illumination area and the maximal overlap between light illumination and collection spots, while maintaining sufficient light collection efficiency with minimized specular reflection. Importantly, we show that this probe allows the selection of a constant and shallow physical penetration depth, insensitive to a wide range of tissue-relevant scattering coefficients and anisotropy factors. We demonstrate the capability of this depth-selective fiber-optic probe to accurately quantify the absorber concentration in superficial tissue without the distortion of tissue scattering properties; and characterize the optical properties of superficial skin tissue.

© 2011 OSA

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Spectroscopic Diagnostics

History
Original Manuscript: October 29, 2010
Revised Manuscript: January 30, 2011
Manuscript Accepted: March 6, 2011
Published: March 14, 2011

Citation
Can Fang, David Brokl, Randall E. Brand, and Yang Liu, "Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth," Biomed. Opt. Express 2, 838-849 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28(2), 120–122 (2003). [CrossRef] [PubMed]
  2. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002). [CrossRef] [PubMed]
  3. L. Quan and N. Ramanujam, “Relationship between depth of a target in a turbid medium and fluorescence measured by a variable-aperture method,” Opt. Lett. 27(2), 104–106 (2002). [CrossRef] [PubMed]
  4. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003). [CrossRef] [PubMed]
  5. F. Jaillon, W. Zheng, and Z. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Phys. Med. Biol. 53(4), 937–951 (2008). [CrossRef] [PubMed]
  6. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004). [CrossRef] [PubMed]
  7. L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009). [CrossRef] [PubMed]
  8. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44(20), 4291–4305 (2005). [CrossRef] [PubMed]
  9. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt. 43(3), 542–554 (2004). [CrossRef] [PubMed]
  10. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005). [CrossRef] [PubMed]
  11. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008). [CrossRef] [PubMed]
  12. Y. Liu, Y. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005). [CrossRef] [PubMed]
  13. A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004). [CrossRef] [PubMed]
  14. A. Amelink, H. J. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  15. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008). [CrossRef] [PubMed]
  16. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36(22), 5655–5661 (1997). [CrossRef] [PubMed]
  17. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16(11), 8263–8268 (2008). [CrossRef] [PubMed]
  18. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  19. Y. L. Kim, R. K. Yang Liu, H. K. Wali, M. J. Roy, A. K. Goldberg, Kromin, Kun Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J Sel. Top. Quantum Electron. 9(2), 243–256 (2003). [CrossRef]
  20. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water,” (Oregon Medical Laser Center, 1998), http://omlc.ogi.edu/spectra/hemoglobin/summary.html .
  21. A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10(4), 044017 (2005). [CrossRef] [PubMed]
  22. M. Egawa, T. Hirao, and M. Takahashi, “In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy,” Acta Derm. Venereol. 87(1), 4–8 (2007). [CrossRef] [PubMed]
  23. K. A. Holbrook and G. F. Odland, “Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis,” J. Invest. Dermatol. 62(4), 415–422 (1974). [CrossRef] [PubMed]
  24. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited