OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 858–870

Demonstration of remote optical measurement configuration that correlates to glucose concentration in blood

Yevgeny Beiderman, Raz Blumenberg, Nir Rabani, Mina Teicher, Javier Garcia, Vicente Mico, and Zeev Zalevsky  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 4, pp. 858-870 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical approach allowing the extraction and the separation of remote vibration sources has recently been proposed. The approach has also been applied for medical related applications as blood pressure and heart beats monitoring. In this paper we demonstrate its capability to monitor glucose concentration in blood stream. The technique is based on the tracking of temporal changes of reflected secondary speckle produced in human skin (wrist) when being illuminated by a laser beam. A temporal change in skin’s vibration profile generated due to blood pulsation is analyzed for estimating the glucose concentration. Experimental tests that were carried out in order to verify the proposed approach showed good match with the change of the glucose level at the positive slope stage as it was obtained from conventional reference measurement.

© 2011 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Noninvasive Optical Diagnostics

Original Manuscript: November 1, 2010
Revised Manuscript: February 6, 2011
Manuscript Accepted: March 6, 2011
Published: March 14, 2011

Yevgeny Beiderman, Raz Blumenberg, Nir Rabani, Mina Teicher, Javier Garcia, Vicente Mico, and Zeev Zalevsky, "Demonstration of remote optical measurement configuration that correlates to glucose concentration in blood," Biomed. Opt. Express 2, 858-870 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. B. Davidson, Diabetes Mellitus- Diagnosis and Treatment, 3rd ed. (Churchill Livingstone, 1991).
  2. http://www.iso.org/iso/home.html .
  3. L. S. Jefferson, A. D. Chernington, and H. M. Goodman, “The endocrine system, Volume 2, the endocrine pancreas and regulating of metabolism,” in Handbook of Physiology (Oxford University Press, 2001).
  4. J. A. Tamada, S. Garg, L. Jovanovic, K. R. Pitzer, S. Fermi, R. O. Potts, and Cygnus Research Team, “Noninvasive glucose monitoring: comprehensive clinical results,” JAMA, J. Am. Med. Assoc. 282(19), 1839–1844 (1999). [CrossRef] [PubMed]
  5. T. Koschinsky and L. Heinemann, “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab. Res. Rev. 17(2), 113–123 (2001). [CrossRef] [PubMed]
  6. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000). [CrossRef] [PubMed]
  7. N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009). [CrossRef] [PubMed]
  8. K.-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Muller, and B. Mertes, “Application of near-infrared spectroscopy for non-invasive determination of blood/tissue glucose using neural networks,” Z. Phys. Chem. 191, 179–190 (1995).
  9. R. Marbach, Th. Koschinsky, F. A. Gries, and H. M. Heise, “Non-invasive blood glucose assay by near-infrared diffued reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47(7), 875–881 (1993). [CrossRef]
  10. H. M. Heise, R. Marbach, G. Janatsch, and J. D. Kruse-Jarres, “Multivariate determination of glucose in whole blood by attenuated total reflection infrared spectroscopy,” Anal. Chem. 61(18), 2009–2015 (1989). [CrossRef] [PubMed]
  11. S. Y. Wang, C. E. Hasty, P. A. Watson, J. P. Wicksted, R. D. Stith, and W. F. March, “Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy,” Appl. Opt. 32(6), 925–929 (1993). [CrossRef] [PubMed]
  12. G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput. 31(3), 284–290 (1993). [CrossRef] [PubMed]
  13. K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol. 38(12), 1911–1922 (1993). [CrossRef] [PubMed]
  14. J. T. Bruulsema, M. Essenpreis, L. Heinemann, J. E. Hayward, M. Berger, F. A. Greis, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, T. J. Farrell, M. S. Patterson, and D. Bocker, “Detection of changes in blood glucose concentration in- vivo with spatially resolved diffuse reflectance,” in Conference on Biomedical Optical Spectroscopy and Diagnostics (Optical Society of America 1996).
  15. Y. Hori, T. Yasui, and T. Araki, “Multiple-scattering-free optical glucose monitoring based on femtosecond pulse interferometry,” Opt. Rev. 12(3), 202–206 (2005). [CrossRef]
  16. Y. Hori, T. Yasui, and T. Araki, “Optical glucose monitoring based on femtosecond two-color pulse interferometry,” Opt. Rev. 13(1), 29–33 (2006). [CrossRef]
  17. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001). [CrossRef] [PubMed]
  18. K. V. Larin, M. G. Ghosn, S. N. Ivers, A. Tellez, and J. F. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4(4), 312–317 (2007). [CrossRef]
  19. V. V. Sapozhnikova, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, and D. S. Prough, “Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe,” J. Biomed. Opt. 13(2), 021112 (2008). [CrossRef] [PubMed]
  20. M. Kinnunen, R. Myllylä, and S. Vainio, “Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography,” J. Biomed. Opt. 13(2), 021111 (2008). [CrossRef] [PubMed]
  21. S. Mansouri and J. S. Schultz, “A miniature optical glucose sensor based on affinity binding,” Biotechnology 2(10), 885–890 (1984). [CrossRef]
  22. R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, and G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999). [CrossRef] [PubMed]
  23. J. F. Sierra, J. Galbam, S. DeMarcos, and J. R. Castillo, “Direct determination of glucose in serum by fluorimetry using a labeled enzyme,” Anal. Chim. Acta 414(1-2), 33–41 (2000). [CrossRef]
  24. Z. Zalevsky and J. Garcia, “Motion detection system and method,” Israeli Patent Application No. 184868 (July 2007); WO/2009/013738 International Application No PCT/IL 2008/001008 (July 2008).
  25. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009). [CrossRef] [PubMed]
  26. Y. Beiderman, I. Horovitz, N. Burshtein, M. Teicher, J. Garcia, V. Mico, and Z. Zalevsky, “Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern,” J. Biomed. Opt. 15(6), 061707 (2010). [CrossRef] [PubMed]
  27. J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1989).
  28. P. Drouin, D. Rousselle, J. F. Stoltz, C. Guimont, S. Gaillard, G. Vernhes, and G. Debry, “Study of blood viscosity and erythrocyte parameters in diabetic patients using an artificial pancreas,” Scand. J. Clin. Lab. Invest. 41(s156), 165–169 (1981). [CrossRef]
  29. J. W. Hurst, “Naming of the waves in the ECG, with a brief account of their genesis,” Circulation 98(18), 1937–1942 (1998). [PubMed]
  30. S. G. Laychock, “Glucose metabolism, second messengers and insulin secretion,” Life Sci. 47(25), 2307–2316 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited