OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 927–936

Deep UV resonant Raman spectroscopy for photodamage characterization in cells

Yasuaki Kumamoto, Atsushi Taguchi, Nicholas Isaac Smith, and Satoshi Kawata  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 4, pp. 927-936 (2011)
http://dx.doi.org/10.1364/BOE.2.000927


View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employed deep UV (DUV) Raman spectroscopy for characterization of molecular photodamage in cells. 244 nm light excitation Raman spectra were measured for HeLa cells exposed to the excitation light for different durations. In the spectra obtained with the shortest exposure duration (0.25 sec at 16 µW/µm2 irradiation), characteristic resonant Raman bands of adenine and guanine at 1483 cm−1 and tryptophan and tyrosine at 1618 cm−1 were clearly visible. With increasing exposure duration (up to 12.5 sec), these biomolecular Raman bands diminished, while a photoproduct Raman band at 1611 cm−1 grew. By exponential function fitting analyses, intensities of these characteristic three bands were correlated with sample exposure duration at different intensities of excitation light. We then suggest practical excitation conditions effective for DUV Raman observation of cells without photodamage-related spectral distortion.

© 2011 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(350.1820) Other areas of optics : Damage

ToC Category:
Cell Studies

History
Original Manuscript: November 12, 2011
Revised Manuscript: February 18, 2011
Manuscript Accepted: March 9, 2011
Published: March 18, 2011

Citation
Yasuaki Kumamoto, Atsushi Taguchi, Nicholas Isaac Smith, and Satoshi Kawata, "Deep UV resonant Raman spectroscopy for photodamage characterization in cells," Biomed. Opt. Express 2, 927-936 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nocentini and L. Chinsky, “In vivo studies of nucleic acid by ultraviolet resonance Raman spectroscopy on eucaryotic living cells,” J. Raman Spectrosc. 14(1), 9–10 (1983). [CrossRef]
  2. Y. Yazdi, N. Ramanujam, R. Lotan, M. F. Mitchell, W. Hittelman, and R. Richards-Kortum, “Resonance Raman spectroscopy at 257 nm excitation of normal and malignant cultured breast and cervical cells,” Appl. Spectrosc. 53(1), 82–85 (1999). [CrossRef]
  3. U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism--spectroscopic characterization of Staphylococcus epidermidis,” ChemPhysChem 8(1), 124–137 (2007). [CrossRef] [PubMed]
  4. P. V. Zinin, A. Misra, L. Kamemoto, Q. Yu, N. Hu, and S. K. Sharma, “Visible, near-infrared, and ultraviolet laser-excited Raman spectroscopy of themonocytes/macrophages (U937) cells,” J. Raman. Spectrosc. 41, 268–274 (2010).
  5. R. Manoharan, E. Ghiamati, R. A. Dalterio, K. A. Britton, W. H. Nelson, and J. F. Sperry, “UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate,” J. Microbiol. Methods 11(1), 1–15 (1990). [CrossRef]
  6. S. Kaminaka, Y. Imamura, M. Shingu, T. Kitagawa, and T. Toyoda, “Studies of bovine enterovirus structure by ultraviolet resonance Raman spectroscopy,” J. Virol. Methods 77(2), 117–123 (1999). [CrossRef] [PubMed]
  7. Q. Wu, T. Hamilton, W. H. Nelson, S. Elliott, J. F. Sperry, and M. Wu, “UV Raman spectral intensities of E. coli and other bacteria excited at 228.9, 244.0, and 248.2 nm,” Anal. Chem. 73(14), 3432–3440 (2001). [CrossRef] [PubMed]
  8. M. Baek, W. H. Nelson, D. Britt, and J. F. Sperry, “UV-excited resonance Raman spectra of heat denatured lysozyme and staphylococcus epidermidis,” Appl. Spectrosc. 42(7), 1312–1314 (1988). [CrossRef]
  9. M. Schmitt and J. Popp, “Raman spectroscopy at the beginning of the twenty-first century,” J. Raman Spectrosc. 37(1-3), 20–28 (2006). [CrossRef]
  10. M. Harz, M. Krause, T. Bartels, K. Cramer, P. Rösch, and J. Popp, “Minimal invasive gender determination of birds by means of UV-resonance Raman spectroscopy,” Anal. Chem. 80(4), 1080–1086 (2008). [CrossRef] [PubMed]
  11. W. F. Vincent and P. J. Neale, Mechanisms of UV Damage to Aquatic Organisms (Cambridge University Press: Cambridge, 2000), Chap 6.
  12. H. Görner, “Photochemistry of DNA and related biomolecules: quantum yields and consequences of photoionization,” J. Photochem. Photobiol. B 26(2), 117–139 (1994). [CrossRef] [PubMed]
  13. J.-L. Ravanat, T. Douki, and J. Cadet, “Direct and indirect effects of UV radiation on DNA and its components,” J. Photochem. Photobiol. B 63(1-3), 88–102 (2001). [CrossRef] [PubMed]
  14. M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, “UV-resonance Raman spectroscopic study of human plasma of healthy donors and patients with thrombotic microangiopathy,” Biopolymers 82(4), 317–324 (2006). [CrossRef] [PubMed]
  15. F. Sureau, L. Chinsky, C. Amirand, J. P. Ballini, M. Duquesne, A. Laigle, P. Y. Turpin, and P. Vigny, “An ultraviolet micro-Raman spectrometer: resonance Raman spectroscopy within single living cells,” Appl. Spectrosc. 44(6), 1047–1051 (1990). [CrossRef]
  16. V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. Asher, “UV Raman microspectroscopy: spectral and spatial selectivity with sensitivity and simplicity,” Appl. Spectrosc. 51(1), 81–86 (1997). [CrossRef]
  17. Q. Wu, G. Balakrishnan, A. Pevsner, and T. G. Spiro, “Histidine photodegradation during UV resonance Raman spectroscopy,” J. Phys. Chem. A 107(40), 8047–8051 (2003). [CrossRef]
  18. K. Lao and A. N. Glazer, “Ultraviolet-B photodestruction of a light-harvesting complex,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5258–5263 (1996). [CrossRef] [PubMed]
  19. C. R. Johnson, M. Ludwig, and S. A. Asher, “Ultraviolet resonance Raman characterization of photochemical transients of phenol, tyrosine, and tryptophan,” J. Am. Chem. Soc. 108(5), 905–912 (1986). [CrossRef]
  20. M. P. Russell, S. Vohník, and G. J. Thomas., “Design and performance of an ultraviolet resonance Raman spectrometer for proteins and nucleic acids,” Biophys. J. 68(4), 1607–1612 (1995). [CrossRef] [PubMed]
  21. M. M. Mariani, P. Lampen, J. Popp, B. R. Wood, and V. Deckert, “Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy,” Analyst (Lond.) 134(6), 1154–1161 (2009). [CrossRef] [PubMed]
  22. S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006). [CrossRef] [PubMed]
  23. A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B 64(7), 075414 (2001). [CrossRef]
  24. D. Voet, W. B. Gratzer, R. A. Cox, and P. Doty, “Absorption spectra of nucleotides, polynucleotides, and nucleic acids,” Biopolymers 1(3), 193–208 (1963). [CrossRef]
  25. H. C. Bolton and J. J. Weiss, “Hypochromism in the ultra-violet absorption of nucleic acids and related structures,” Nature 195(4842), 666–668 (1962). [CrossRef] [PubMed]
  26. S. Roy, Strategies for the Minimisation of UV-Induced Damage (Cambridge University Press: Cambridge, 2000), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited