OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 937–945

Chemical visualization of individual chondrocytes in articular cartilage by attenuated-total-reflection Fourier Transform Infrared Microimaging

Jianhua Yin and Yang Xia  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 4, pp. 937-945 (2011)
http://dx.doi.org/10.1364/BOE.2.000937


View Full Text Article

Enhanced HTML    Acrobat PDF (2511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fourier transform infrared imaging (FTIRI) and the attenuated total reflection Fourier transform infrared microimaging (ATR-FTIRM) were used to study the chemical and structural distributions of cellular components surrounding individual chondrocytes in canine humeral cartilage, at 6.25µm pixel resolution in FTIRI and 1.56µm pixel resolution in ATR-FTIRM. The chemical and structural distributions of the cellular components in chondrocytes and tissue can be successfully imaged in high resolution ATR-FTIRM. One can also study the territorial matrix of fine collagen fibrils surrounding the individual chondrocytes by the polarization experiments using the absorption ratio of amide I to amide II bands.

© 2011 OSA

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Cell Studies

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 25, 2011
Manuscript Accepted: March 7, 2011
Published: March 18, 2011

Citation
Jianhua Yin and Yang Xia, "Chemical visualization of individual chondrocytes in articular cartilage by attenuated-total-reflection Fourier Transform Infrared Microimaging," Biomed. Opt. Express 2, 937-945 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-937


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Hardingham, S. Tew, and A. Murdoch, “Tissue engineering: chondrocytes and cartilage,” Arthritis Res. 4(Suppl 3), S63–S68 (2002). [CrossRef] [PubMed]
  2. R. A. Stockwell, “Chondrocytes,” J. Clin. Pathol. Suppl. (R Coll Pathol) 12, 7–13 (1978). [PubMed]
  3. K. Tavakol, R. G. Miller, D. P. Bazett-Jones, W. S. Hwang, L. E. McGann, and N. S. Schachar, “Ultrastructural changes of articular cartilage chondrocytes associated with freeze-thawing,” J. Orthop. Res. 11(1), 1–9 (1993). [CrossRef] [PubMed]
  4. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” N. Engl. J. Med. 331(14), 889–895 (1994). [CrossRef] [PubMed]
  5. A. C. Hall, “Volume-sensitive taurine transport in bovine articular chondrocytes,” J. Physiol. 484(Pt 3), 755–766 (1995). [PubMed]
  6. S. Hashimoto, R. L. Ochs, F. Rosen, J. Quach, G. McCabe, J. Solan, J. E. Seegmiller, R. Terkeltaub, and M. Lotz, “Chondrocyte-derived apoptotic bodies and calcification of articular cartilage,” Proc. Natl. Acad. Sci. U.S.A. 95(6), 3094–3099 (1998). [CrossRef] [PubMed]
  7. E. Kolettas, H. I. Muir, J. C. Barrett, and T. E. Hardingham, “Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor,” Rheumatology (Oxford) 40(10), 1146–1156 (2001). [CrossRef] [PubMed]
  8. C. C. Scott, A. Luttge, and K. A. Athanasiou, “Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry,” J. Biomed. Mater. Res. A 72A(1), 83–90 (2005). [CrossRef] [PubMed]
  9. S. J. Curran, R. Chen, J. M. Curran, and J. A. Hunt, “Expansion of human chondrocytes in an intermittent stirred flow bioreactor, using modified biodegradable microspheres,” Tissue Eng. 11(9-10), 1312–1322 (2005). [CrossRef] [PubMed]
  10. H. Yamaoka, H. Asato, T. Ogasawara, S. Nishizawa, T. Takahashi, T. Nakatsuka, I. Koshima, K. Nakamura, H. Kawaguchi, U. I. Chung, T. Takato, and K. Hoshi, “Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials,” J. Biomed. Mater. Res. A 78A(1), 1–11 (2006). [CrossRef] [PubMed]
  11. J. A. Ryan, E. A. Eisner, G. DuRaine, Z. You, and A. Hari Reddi, “Mechanical compression of articular cartilage induces chondrocyte proliferation and inhibits proteoglycan synthesis by activation of the ERK pathway: implications for tissue engineering and regenerative medicine,” J. Tissue Eng. Regen. Med. 3(2), 107–116 (2009). [CrossRef] [PubMed]
  12. I. K. Y. Lo, P. Sciore, M. Chung, S. Liang, R. B. Boorman, G. M. Thornton, J. B. Rattner, and K. Muldrew, “Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner,” Arthroscopy J. Arthroscopic. Rel. Surg. 25(7), 707–715 (2009). [CrossRef]
  13. J.-H. Yin and Y. Xia, “Macromolecular concentrations in bovine nasal cartilage by Fourier transform infrared imaging and principal component regression,” Appl. Spectrosc. 64(11), 1199–1208 (2010). [CrossRef] [PubMed]
  14. Y. Xia, N. Ramakrishnan, and A. Bidthanapally, “The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI),” Osteoarthritis Cartilage 15(7), 780–788 (2007). [CrossRef] [PubMed]
  15. N. Ramakrishnan, Y. Xia, and A. Bidthanapally, “Polarized IR microscopic imaging of articular cartilage,” Phys. Med. Biol. 52(15), 4601–4614 (2007). [CrossRef] [PubMed]
  16. Y. Xia, H. Alhadlaq, N. Ramakrishnan, A. Bidthanapally, F. Badar, and M. Lu, “Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging,” J. Struct. Biol. 164(1), 88–95 (2008). [CrossRef] [PubMed]
  17. N. P. Camacho, P. West, P. A. Torzilli, and R. Mendelsohn, “FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage,” Biopolymers 62(1), 1–8 (2001). [CrossRef] [PubMed]
  18. P. A. West, M. P. G. Bostrom, P. A. Torzilli, and N. P. Camacho, “Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study,” Appl. Spectrosc. 58(4), 376–381 (2004). [CrossRef] [PubMed]
  19. X. Bi, X. Yang, M. P. Bostrom, and N. P. Camacho, “Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage,” Biochim. Biophys. Acta 1758(7), 934–941 (2006). [CrossRef] [PubMed]
  20. H. J. Gulley-Stahl, S. B. Bledsoe, A. P. Evan, and A. J. Sommer, “The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis,” Appl. Spectrosc. 64(1), 15–22 (2010). [CrossRef] [PubMed]
  21. S. G. Kazarian and K. L. A. Chan, “Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging,” Appl. Spectrosc. 64(5), 135–152 (2010). [CrossRef] [PubMed]
  22. J. Lee, E. Gazi, J. Dwyer, M. D. Brown, N. W. Clarke, J. M. Nicholson, and P. Gardner, “Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics,” Analyst (Lond.) 132(8), 750–755 (2007). [CrossRef] [PubMed]
  23. R. A. Dluhy, “Infrared spectroscopy of biophysical monomolecular films at interfaces: theory and applications, ” Appl. Spectrosc. Rev. 35(4), 315–351 (2000). [CrossRef]
  24. J. Dunham, D. R. Shackleton, M. E. Billingham, L. Bitensky, J. Chayen, and I. H. Muir, “A reappraisal of the structure of normal canine articular cartilage,” J. Anat. 157, 89–99 (1988). [PubMed]
  25. S. Z. Wang, Y. P. Huang, Q. Wang, Y. P. Zheng, and Y. H. He, “Assessment of depth and degeneration dependences of articular cartilage refractive index using optical coherence tomography in vitro,” Connect. Tissue Res. 51(1), 36–47 (2010). [CrossRef] [PubMed]
  26. C. V. Koulis, J. A. Reffner, and A. M. Bibby, “Comparison of transmission and internal reflection infrared spectra of cocaine,” J. Forensic Sci. 46(4), 822–829 (2001). [PubMed]
  27. N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr, and G. P. Williams, “Highly resolved chemical imaging of living cells by using synchrotron infrared microspectrometry,” Proc. Natl. Acad. Sci. U.S.A. 95(9), 4837–4840 (1998). [CrossRef] [PubMed]
  28. Y. Xia, J. B. Moody, H. Alhadlaq, and J. N. Hu, “Imaging the physical and morphological properties of a multi-zone young articular cartilage at microscopic resolution,” J. Magn. Reson. Imaging 17(3), 365–374 (2003). [CrossRef] [PubMed]
  29. H. A. Alhadlaq, Y. Xia, F. M. Hansen, C. M. Les, and G. Lust, “Morphological changes in articular cartilage due to static compression: polarized light microscopy study,” Connect. Tissue Res. 48(2), 76–84 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited