OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 981–986

Targeted imaging of colorectal dysplasia in living mice with fluorescence microendoscopy

Sakib F. Elahi, Sharon J. Miller, Bishnu Joshi, and Thomas D. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 4, pp. 981-986 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We validate specific binding activity of a fluorescence-labeled peptide to colorectal dysplasia in living mice using a miniature, flexible, fiber microendoscope that passes through the instrument channel of an endoscope. The microendoscope delivers excitation light at 473 nm through a fiber-optic bundle with outer diameter of 680 µm to collect en face images at 10 Hz with 4 µm lateral resolution. We applied the FITC-labeled peptide QPIHPNNM topically to colonic mucosa in genetically engineered mice that spontaneously develop adenomas. More than two-fold greater fluorescence intensity was measured from adenomas compared to adjacent normal-appearing mucosa. Images of adenomas showed irregular morphology characteristic of dysplasia.

© 2011 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Endoscopes, Catheters and Micro-Optics

Original Manuscript: February 25, 2011
Revised Manuscript: March 21, 2011
Manuscript Accepted: March 22, 2011
Published: March 28, 2011

Sakib F. Elahi, Sharon J. Miller, Bishnu Joshi, and Thomas D. Wang, "Targeted imaging of colorectal dysplasia in living mice with fluorescence microendoscopy," Biomed. Opt. Express 2, 981-986 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. American Cancer Society, Cancer Facts & Figures 2010 (American Cancer Society, Atlanta, Ga., 2010).
  2. R. S. Cotran, Robbins and Cotran Pathalogic Basis of Disease, 7th ed., V. Kumar, A. K. Abbas, and N. Fausto, eds. (Saunders, Philadelphia, Pa., 2005).
  3. M. Goetz, A. Ziebart, S. Foersch, M. Vieth, M. J. Waldner, P. Delaney, P. R. Galle, M. F. Neurath, and R. Kiesslich, “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology 138(2), 435–446 (2010). [CrossRef] [PubMed]
  4. P. L. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. B. Du, A. P. Wu, P. Sahbaie, J. M. Crawford, A. W. Lowe, C. H. Contag, and T. D. Wang, “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nat. Med. 14(4), 454–458 (2008). [CrossRef] [PubMed]
  5. F. Ciardiello and G. Tortora, “EGFR antagonists in cancer treatment,” N. Engl. J. Med. 358(11), 1160–1174 (2008). [CrossRef] [PubMed]
  6. W. De Roock, B. Biesmans, J. De Schutter, and S. Tejpar, “Clinical biomarkers in oncology: focus on colorectal cancer,” Mol. Diagn. Ther. 13(2), 103–114 (2009). [PubMed]
  7. N. E. Sharpless and R. A. Depinho, “The mighty mouse: genetically engineered mouse models in cancer drug development,” Nat. Rev. Drug Discov. 5(9), 741–754 (2006). [CrossRef] [PubMed]
  8. G. S. Sandhu, L. Solorio, A.-M. Broome, N. Salem, J. Kolthammer, T. Shah, C. Flask, and J. L. Duerk, “Whole animal imaging,” Wiley Interdiscip Rev. Syst. Biol. Med. 2(4), 398–421 (2010). [CrossRef] [PubMed]
  9. M. Goetz, C. Fottner, E. Schirrmacher, P. Delaney, S. Gregor, C. Schneider, D. Strand, S. Kanzler, B. Memadathil, E. Weyand, M. Holtmann, R. Schirrmacher, M. M. Weber, M. Anlauf, G. Klöppel, M. Vieth, P. R. Galle, P. Bartenstein, M. F. Neurath, and R. Kiesslich, “In-vivo confocal real-time mini-microscopy in animal models of human inflammatory and neoplastic diseases,” Endoscopy 39(4), 350–356 (2007). [CrossRef] [PubMed]
  10. S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol. (2010), doi:. [CrossRef] [PubMed]
  11. S. J. Miller, B. P. Joshi, Y. Feng, A. Gaustad, E. R. Fearon, and T. D. Wang, “In vivo fluorescence-based endoscopic detection of colon dysplasia in the mouse using a novel Peptide probe,” PLoS ONE 6(3), e17384 (2011). [CrossRef] [PubMed]
  12. C. Becker, M. C. Fantini, and M. F. Neurath, “High resolution colonoscopy in live mice,” Nat. Protoc. 1(6), 2900–2904 (2007). [CrossRef] [PubMed]
  13. T. Hinoi, A. Akyol, B. K. Theisen, D. O. Ferguson, J. K. Greenson, B. O. Williams, K. R. Cho, and E. R. Fearon, “Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation,” Cancer Res. 67(20), 9721–9730 (2007). [CrossRef] [PubMed]
  14. C. N. Arnold, A. Goel, H. E. Blum, and C. R. Boland, “Molecular pathogenesis of colorectal cancer: implications for molecular diagnosis,” Cancer 104(10), 2035–2047 (2005). [CrossRef] [PubMed]
  15. P. Trobridge, S. Knoblaugh, M. K. Washington, N. M. Munoz, K. D. Tsuchiya, A. Rojas, X. Song, C. M. Ulrich, T. Sasazuki, S. Shirasawa, and W. M. Grady, “TGF-β receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a β-catenin-independent pathway,” Gastroenterology 136(5), 1680–1688e7 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (776 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited