OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 4 — Apr. 1, 2011
  • pp: 987–995

Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells

Liang Xue, Jiancheng Lai, Shouyu Wang, and Zhenhua Li  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 4, pp. 987-995 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A slightly-off-axis interferometry based Hilbert phase microscopy (HPM) method is developed to quantitatively obtain the phase distribution. Owing to its single-shot nature and details detection ability, HPM can be used to investigate rapid phenomena that take place in transparent structures such as biological cells. Moreover, the slightly-off-axis interferometry owns higher effective bandwidth and more sensitivity than traditional off-axis interferometry. The proposed method takes advantages of the above techniques to obtain the phase image of the red blood cells and compared with the traditional off-axis interferometry and phase retrieval algorithm based on the FFT. The experimental results show that the proposed method owns fine spatial details and real-time imaging ability. We are sure that the proposed method provides a breakthrough for real-time observing and quantitative analyzing of cells in vivo.

© 2011 OSA

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: January 18, 2011
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 22, 2011
Published: March 29, 2011

Liang Xue, Jiancheng Lai, Shouyu Wang, and Zhenhua Li, "Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells," Biomed. Opt. Express 2, 987-995 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34(6), 767–769 (2009). [CrossRef] [PubMed]
  2. D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300(5616), 82–86 (2003). [CrossRef] [PubMed]
  3. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007). [CrossRef] [PubMed]
  4. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, “Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy,” Opt. Lett. 32(11), 1572–1574 (2007). [CrossRef] [PubMed]
  5. G. N. Vishnyakov and G. G. Levin, “Interferometric computed-microtomography of 3D phase objects,” Proc. SPIE 2984, 64–71 (1997). [CrossRef]
  6. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009). [CrossRef] [PubMed]
  7. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009). [CrossRef] [PubMed]
  8. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  9. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  10. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000). [CrossRef] [PubMed]
  11. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38(23), 4990–4996 (1999). [CrossRef] [PubMed]
  12. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52(10), 1123–1128 (1962). [CrossRef]
  13. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009). [CrossRef] [PubMed]
  14. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005). [CrossRef] [PubMed]
  15. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006). [CrossRef] [PubMed]
  16. K. Dillon and Y. Fainman, “Depth sectioning of attenuation,” J. Opt. Soc. Am. A 27(6), 1347–1354 (2010). [CrossRef] [PubMed]
  17. E. D. Taylor, C. Cates, M. E. Mauel, D. A. Maurer, D. Nadle, G. A. Navratil, and M. Shilov, “Nonstationary signal analysis of magnetic islands in plasmas,” Rev. Sci. Instrum. 70(12), 4545–4551 (1999). [CrossRef]
  18. S. C. Pei and J. J. Ding, “The generalized radial Hilbert transform and its applications to 2-D edge detection (Any direction or specified directions),” in Proceedings of the IEEE International Conference on Acoustics, (Institute of Electrical and Electronics Engineers, Hong Kong, 2003), pp. 357–360.
  19. “Red blood cell,” http://en.wikipedia.org/wiki/Red_blood_cell .
  20. C. Uzoigwe, “The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels,” Med. Hypotheses 67(5), 1159–1163 (2006). [CrossRef] [PubMed]
  21. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, “Self-reference extended depth-of-field quantitative phase microscopy,” Proc. SPIE 7570, 757018, 757018-8 (2010). [CrossRef]
  22. M. Mir, Z. Wang, K. Tangella, and G. Popescu, “Diffraction phase cytometry: blood on a CD-ROM,” Opt. Express 17(4), 2579–2585 (2009). [CrossRef] [PubMed]
  23. R. Nafe and W. Schlote, “Methods for shape analysis of two-dimensional closed contours—a biologically important, but widely neglected field in histopathology,” Electron J. Pathol. 8, 022-02 (2002).
  24. L. L. Wheeless, R. D. Robinson, O. P. Lapets, C. Cox, A. Rubio, M. Weintraub, and L. J. Benjamin, “Classification of red blood cells as normal, sickle, or other abnormal, using a single image analysis feature,” Cytometry 17(2), 159–166 (1994). [CrossRef] [PubMed]
  25. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Opt. Lett. 32(24), 3522–3524 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited