OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1040–1058

Quantitative principal component model for skin chromophore mapping using multi-spectral images and spatial priors

Jana M. Kainerstorfer, Jason D. Riley, Martin Ehler, Laleh Najafizadeh, Franck Amyot, Moinuddin Hassan, Randall Pursley, Stavros G. Demos, Victor Chernomordik, Michael Pircher, Paul D. Smith, Christoph K. Hitzenberger, and Amir H. Gandjbakhche  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 5, pp. 1040-1058 (2011)
http://dx.doi.org/10.1364/BOE.2.001040


View Full Text Article

Enhanced HTML    Acrobat PDF (1534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel reconstruction algorithm based on Principal Component Analysis (PCA) applied to multi-spectral imaging data. Using numerical phantoms, based on a two layered skin model developed previously, we found analytical expressions, which convert qualitative PCA results into quantitative blood volume and oxygenation values, assuming the epidermal thickness to be known. We also evaluate the limits of accuracy of this method when the value of the epidermal thickness is not known. We show that blood volume can reliably be extracted (less than 6% error) even if the assumed thickness deviates 0.04mm from the actual value, whereas the error in blood oxygenation can be as large as 25% for the same deviation in thickness. This PCA based reconstruction was found to extract blood volume and blood oxygenation with less than 8% error, if the underlying structure is known. We then apply the method to in vivo multi-spectral images from a healthy volunteer’s lower forearm, complemented by images of the same area using Optical Coherence Tomography (OCT) for measuring the epidermal thickness. Reconstruction of the imaging results using a two layered analytical skin model was compared to PCA based reconstruction results. A point wise correlation was found, showing the proof of principle of using PCA based reconstruction for blood volume and oxygenation extraction.

© 2011 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: February 15, 2011
Revised Manuscript: March 29, 2011
Manuscript Accepted: March 29, 2011
Published: April 1, 2011

Citation
Jana M. Kainerstorfer, Jason D. Riley, Martin Ehler, Laleh Najafizadeh, Franck Amyot, Moinuddin Hassan, Randall Pursley, Stavros G. Demos, Victor Chernomordik, Michael Pircher, Paul D. Smith, Christoph K. Hitzenberger, and Amir H. Gandjbakhche, "Quantitative principal component model for skin chromophore mapping using multi-spectral images and spatial priors," Biomed. Opt. Express 2, 1040-1058 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-5-1040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Attas, M. Hewko, J. Payette, T. Posthumus, M. Sowa, and H. Mantsch, “Visualization of cutaneous hemoglobin oxygenation and skin hydration using near-infrared spectroscopic imaging,” Skin Res. Technol. 7(4), 238–245 (2001). [CrossRef] [PubMed]
  2. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002). [CrossRef] [PubMed]
  3. G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt. 48(18), 3490–3496 (2009). [CrossRef] [PubMed]
  4. Y. Miyamae, Y. Yamakawa, M. Kawabata, and Y. Ozaki, “A noninvasive method for assessing interior skin damage caused by chronological aging and photoaging based on near-infrared diffuse reflection spectroscopy,” Appl. Spectrosc. 62(6), 677–681 (2008). [CrossRef] [PubMed]
  5. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009). [CrossRef] [PubMed]
  6. A. Vogel, V. V. Chernomordik, J. D. Riley, M. Hassan, F. Amyot, B. Dasgeb, S. G. Demos, R. Pursley, R. F. Little, R. Yarchoan, Y. Tao, and A. H. Gandjbakhche, “Using noninvasive multispectral imaging to quantitatively assess tissue vasculature,” J. Biomed. Opt. 12(5), 051604 (2007). [CrossRef] [PubMed]
  7. C. Zakian, I. Pretty, R. Ellwood, and D. Hamlin, “In vivo quantification of gingival inflammation using spectral imaging,” J. Biomed. Opt. 13(5), 054045 (2008). [CrossRef] [PubMed]
  8. E. Claridge, S. Cotton, P. Hall, and M. Moncrieff, “From colour to tissue histology: Physics-based interpretation of images of pigmented skin lesions,” Med. Image Anal. 7(4), 489–502 (2003). [CrossRef] [PubMed]
  9. R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009). [CrossRef] [PubMed]
  10. M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Contribution of various scattering orders to OCT images of skin,” in Optical Coherence Tomography and Coherence Techniques III, P. Andersen and Z. Chen, eds., Vol. 6627 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2007), paper 6627_23.
  11. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol. 53(18), 4995–5009 (2008). [CrossRef] [PubMed]
  12. J. M. Kainerstorfer, M. Ehler, F. Amyot, M. Hassan, S. G. Demos, V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Principal component model of multispectral data for near real-time skin chromophore mapping,” J. Biomed. Opt. 15(4), 046007 (2010). [CrossRef] [PubMed]
  13. N. Tsumura, H. Haneishi, and Y. Miyake, “Independent-component analysis of skin color image,” J. Opt. Soc. Am. A 16(9), 2169–2176 (1999). [CrossRef] [PubMed]
  14. S. E. Umbaugh, R. H. Moss, W. V. Stoecker, and G. Hance, “Automatic color segmentation algorithms-with application to skin tumor feature identification,” IEEE Eng. Med. Biol. Mag. 12(3), 75–82 (1993). [CrossRef]
  15. K. Pearson, “On lines and planes of closest fit to systems of points in space,” Philos. Mag. Ser. 6 2(11), 559–572 (1901). [CrossRef]
  16. H. Mandelkow, D. Brandeis, and P. Boesiger, “Good practices in EEG-MRI: the utility of retrospective synchronization and PCA for the removal of MRI gradient artefacts,” Neuroimage 49(3), 2287–2303 (2010). [CrossRef] [PubMed]
  17. L. L. Nuffer, P. A. Medvick, H. P. Foote, and J. C. Solinsky, “Multispectral/hyperspectral image enhancement for biological cell analysis,” Cytometry A 69A(8), 897–903 (2006). [CrossRef] [PubMed]
  18. Z. She, Y. Liu, and A. Damatoa, “Combination of features from skin pattern and ABCD analysis for lesion classification,” Skin Res. Technol. 13(1), 25–33 (2007). [CrossRef] [PubMed]
  19. Y. Cheng, R. Swamisai, S. E. Umbaugh, R. H. Moss, W. V. Stoecker, S. Teegala, and S. K. Srinivasan, “Skin lesion classification using relative color features,” Skin Res. Technol. 14(1), 53–64 (2008). [PubMed]
  20. G. Hance, S. E. Umbaugh, R. H. Moss, and W. V. Stoecker, “Unsupervised color image segmentation: with application to skin tumor borders,” IEEE Eng. Med. Biol. Mag. 15(1), 104–111 (1996). [CrossRef]
  21. M. H. Fadzil, S. Norashikin, H. H. Suraiya, and H. Nugroho, “Independent component analysis for assessing therapeutic response in vitiligo skin disorder,” J. Med. Eng. Technol. 33(2), 101–109 (2009). [CrossRef] [PubMed]
  22. H. Nugroho, M. H. Fadzil, V. V. Yap, S. Norashikin, and H. H. Suraiya, “Determination of skin repigmentation progression,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 3442–3445 (2007). [CrossRef] [PubMed]
  23. T. Binzoni, A. Vogel, A. H. Gandjbakhche, and R. Marchesini, “Detection limits of multi-spectral optical imaging under the skin surface,” Phys. Med. Biol. 53(3), 617–636 (2008). [CrossRef] [PubMed]
  24. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  25. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  26. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  27. J. M. Crowther, A. Sieg, P. Blenkiron, C. Marcott, P. J. Matts, J. R. Kaczvinsky, and A. V. Rawlings, “Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo,” Br. J. Dermatol. 159(3), 567–577 (2008). [PubMed]
  28. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology (Basel) 217(1), 14–20 (2008). [CrossRef] [PubMed]
  29. P. Zakharov, M. S. Talary, I. Kolm, and A. Caduff, “Full-field optical coherence tomography for the rapid estimation of epidermal thickness: study of patients with diabetes mellitus type 1,” Physiol. Meas. 31(2), 193–205 (2010). [CrossRef] [PubMed]
  30. J. M. Kainerstorfer, F. Amyot, S. G. Demos, M. Hassan, V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Quantitative assessment of ischemia and reactive hyperemia of the dermal layers using multi-spectral imaging on the human arm,” Proc. SPIE 7369, 73690P, 73690P–10 (2009). [CrossRef]
  31. J. M. Kainerstorfer, F. Amyot, M. Ehler, M. Hassan, S. G. Demos, V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Direct curvature correction for noncontact imaging modalities applied to multispectral imaging,” J. Biomed. Opt. 15(4), 046013 (2010). [CrossRef] [PubMed]
  32. S. L. Jacques, “Skin optics,” Oregon Medical Laser Center News (Jan. 1998), http://omlc.ogi.edu/news/jan98/skinoptics.html .
  33. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002). [CrossRef] [PubMed]
  34. S. Prahl, “Optical absorption of hemoglobin” (Dec. 1999), http://omlc.ogi.edu/spectra/hemoglobin/index.html .
  35. A. H. Gandjbakhche and G. H. Weiss, “Random walk and diffusion-like models of photon migration in turbid media,” in Progress in Optics XXXIV, E. Wolf, ed. (Elsevier Science, 1995), pp. 335–402.
  36. J. Serup, B. E. Jemec, and G. L. Grove, Handbook of Non-invasive Methods and the Skin, 2nd ed. (CRC/Taylor & Francis, Boca Raton, 2006), p. 1029.
  37. J. M. Kainerstorfer, F. Amyot, M. Hassan, M. Ehler, R. Yarchoan, K. M. Wyvill, T. Uldrick, V. Chernomordik, C. K. Hitzenberger, A. H. Gandjbakhche, and J. D. Riley, “Reconstruction-free imaging of Kaposi’s sarcoma using multi-spectral data,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BME6.
  38. W. E. Roberts, “Skin type classification systems old and new,” Dermatol. Clin. 27(4), 529–533, viii (2009). [CrossRef] [PubMed]
  39. J. T. Whitton and J. D. Everall, “The thickness of the epidermis,” Br. J. Dermatol. 89(5), 467–476 (1973). [CrossRef] [PubMed]
  40. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36(1), 150–155 (1997). [CrossRef] [PubMed]
  41. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  42. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009). [CrossRef] [PubMed]
  43. U. Merschbrock, J. Hoffmann, L. Caspary, J. Huber, U. Schmickaly, and D. W. Lübbers, “Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin,” Int. J. Microcirc. Clin. Exp. 14(5), 274–281 (1994). [CrossRef] [PubMed]
  44. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006). [CrossRef] [PubMed]
  45. K. Asai, Y. Sumiyama, M. Watanabe, and K. Aizawa, “Tumor viability using real-time spectral images,” Surg. Today 36(12), 1075–1084 (2006). [CrossRef] [PubMed]
  46. Q. Du and J. E. Fowler, “Low-complexity principal component analysis for hyperspectral image compression,” Int. J. High Perform. Comput. Appl. 22(4), 438–448 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited