OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1059–1068

Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

Zhongwei Zhi, Yeongri Jung, Yali Jia, Lin An, and Ruikang K. Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1059-1068 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1617 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Studying renal microcirculation and its dynamics is of great importance for understanding the renal function and further aiding the diagnosis, prevention and treatment of renal pathologies. In this paper, we present a potentially useful method to provide high-sensitive volumetric imaging of renal microcirculations using ultrahigh-sensitive optical microangiography (UHS-OMAG). The UHS-OMAG image system used here is based on spectral domain optical coherence tomography, which uses a broadband light source centered at 1300 nm with an imaging speed of 150 frames per second that requires ~6.7 sec to complete one 3D scan of ~2.5 × 2.5 mm2 area. The technique is sensitive enough to image capillary networks, such as peritubular capillaries within renal cortex. We show the ability of UHS-OMAG to provide depth-resolved volumetric images of capillary level renal microcirculation. We also show that UHS-OMAG is capable of monitoring the changes of renal microcirculation in response to renal ischemia and reperfusion. Finally, we attempt to show the capability of OMAG to provide quantitative analysis about velocity changes in a single capillary vessel (down to tens of microns per second) in response to the ischemic event.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Cardiovascular Applications

Original Manuscript: March 7, 2011
Revised Manuscript: March 30, 2011
Manuscript Accepted: March 31, 2011
Published: April 1, 2011

Virtual Issues
In vivo Microcirculation Imaging (2011) Biomedical Optics Express

Zhongwei Zhi, Yeongri Jung, Yali Jia, Lin An, and Ruikang K. Wang, "Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography," Biomed. Opt. Express 2, 1059-1068 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Steiber, K. Kalantar-Zadeh, D. Secker, M. McCarthy, A. Sehgal, and L. McCann, “Subjective Global Assessment in chronic kidney disease: a review,” J. Ren. Nutr. 14(4), 191–200 (2004). [PubMed]
  2. R. Nissel, D. C. Fischer, A. Puhlmann, B. Holdt-Lehmann, A. Mitzner, M. Petzsch, T. Körber, M. Tieß, R. Schmidt, and D. Haffner, “Short-term growth hormone treatment and microcirculation: effects in patients with chronic kidney disease,” Microvasc. Res. 78(2), 246–252 (2009). [CrossRef] [PubMed]
  3. R. Iliescu, S. R. Fernandez, S. Kelsen, C. Maric, and A. R. Chade, “Role of renal microcirculation in experimental renovascular disease,” Nephrol. Dial. Transplant. 25(4), 1079–1087 (2010). [CrossRef] [PubMed]
  4. L. Knesplova and G. P. Krestin, “Magnetic resonance in the assessment of renal function,” Eur. Radiol. 8(2), 201–211 (1998). [CrossRef] [PubMed]
  5. B. J. Hillman, S. M. Lee, P. Tracey, W. Swindell, and D. M. Long, “CT determination of renal and hepatic microvascular volumes in experimental acute renal failure,” Invest. Radiol. 17(1), 41–45 (1982). [CrossRef] [PubMed]
  6. L. A. Fortepiani, M. C. Ruiz, F. Passardi, M. D. Bentley, J. Garcia-Estan, E. L. Ritman, and J. C. Romero, “Effect of losartan on renal microvasculature during chronic inhibition of nitric oxide visualized by micro-CT,” Am. J. Physiol. Renal Physiol. 285(5), F852–F860 (2003). [PubMed]
  7. M. D. Bentley, L. O. Lerman, E. A. Hoffman, M. J. Fiksen-Olsen, E. L. Ritman, and J. C. Romero, “Measurement of renal perfusion and blood flow with fast computed tomography,” Circ. Res. 74(5), 945–951 (1994). [PubMed]
  8. A. Nilsson, “Contrast-enhanced ultrasound of the kidneys,” Eur. Radiol. 14(S8 Suppl 8Suppl 8), 104–109 (2004). [PubMed]
  9. K. Wei, E. Le, J. P. Bin, M. Coggins, J. Thorpe, and S. Kaul, “Quantification of renal blood flow with contrast-enhanced ultrasound,” J. Am. Coll. Cardiol. 37(4), 1135–1140 (2001). [CrossRef] [PubMed]
  10. T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002). [PubMed]
  11. M. Kuliszewski, D. Rudenko, K. Connelly, D. Yuen, J. Trogadis, A. Advani, R. Gilbert, and H. Leong-Poi, “Abstract 5266: a novel technique for assessing the renal microvasculature in chronic kidney disease,” Circulation 120, S1077 (2009).
  12. R. Bezemer, M. Legrand, E. Klijn, M. Heger, I. C. Post, T. M. van Gulik, D. Payen, and C. Ince, “Real-time assessment of renal cortical microvascular perfusion heterogeneities using near-infrared laser speckle imaging,” Opt. Express 18(14), 15054–15061 (2010). [CrossRef] [PubMed]
  13. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  14. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005). [CrossRef]
  15. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008). [CrossRef] [PubMed]
  16. Y. Chen, P. M. Andrews, A. D. Aguirre, J. M. Schmitt, and J. G. Fujimoto, “High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo,” J. Biomed. Opt. 12(3), 034008 (2007). [CrossRef] [PubMed]
  17. Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009). [CrossRef] [PubMed]
  18. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  19. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express 15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  20. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  21. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  22. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  23. Y. Jia, L. An, and R. K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt. 15(3), 030510 (2010). [CrossRef] [PubMed]
  24. Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010). [CrossRef] [PubMed]
  25. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited