OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1121–1134

Fiber optic microendoscopy for preclinical study of bacterial infection dynamics

Nooman Mufti, Ying Kong, Jeffrey D. Cirillo, and Kristen C. Maitland  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1121-1134 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the use of fiber optic microendoscopy to image and quantify bacterial infection in the skin and lungs using an animal model. The contact probe fiber bundle fluorescence microendoscope has a 4 µm resolution, a 750 µm field of view, and a 1 mm outer diameter. Subcutaneous and intra-tracheal infections of fluorescent Mycobacterium bovis Bacillus Calmette-Guérin (BCG) bacteria were detected in situ from inocula down to 104 and 107 colony forming units, respectively.

© 2011 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(110.0110) Imaging systems : Imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Endoscopes, Catheters and Micro-Optics

Original Manuscript: February 23, 2011
Revised Manuscript: April 2, 2011
Manuscript Accepted: April 4, 2011
Published: April 7, 2011

Nooman Mufti, Ying Kong, Jeffrey D. Cirillo, and Kristen C. Maitland, "Fiber optic microendoscopy for preclinical study of bacterial infection dynamics," Biomed. Opt. Express 2, 1121-1134 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Centers for Disease Control, “Tuberculosis (TB): Data and Statistics,” Oct. 25, 2010, retrieved Feb. 16, 2010, http://www.cdc.gov/tb/statistics/default.htm .
  2. M. Taniguchi, E. Akai, T. Koshida, K. Hibi, H. Kudo, K. Otsuka, H. Saito, K. Yano, H. Endo, and K. Mitsubayashi, “A fiber optic immunosensor for rapid bacteria determination,” in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, F. Ibrahim, N. A. Abu Osman, J. Usman, and N. A. Kadri, eds. (Springer-Verlag, Berlin, 2007), pp. 308–311.
  3. M. S. John, A. Kishen, L. C. Sing, and A. Asundi, “Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor,” Appl. Opt. 41(34), 7334–7338 (2002). [CrossRef] [PubMed]
  4. H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, “Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis,” J. Fluoresc. 13(6), 489–493 (2003). [CrossRef]
  5. C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson, and D. A. Benaron, “Photonic detection of bacterial pathogens in living hosts,” Mol. Microbiol. 18(4), 593–603 (1995). [CrossRef] [PubMed]
  6. J. Sjollema, P. K. Sharma, R. J. B. Dijkstra, G. M. van Dam, H. C. van der Mei, A. F. Engelsman, and H. J. Busscher, “The potential for bio-optical imaging of biomaterial-associated infection in vivo,” Biomaterials 31(8), 1984–1995 (2010). [CrossRef] [PubMed]
  7. S. Wiles, K. M. Pickard, K. Peng, T. T. MacDonald, and G. Frankel, “In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium,” Infect. Immun. 74(9), 5391–5396 (2006). [CrossRef] [PubMed]
  8. N. A. Kuklin, G. D. Pancari, T. W. Tobery, L. Cope, J. Jackson, C. Gill, K. Overbye, K. P. Francis, J. Yu, D. Montgomery, A. S. Anderson, W. McClements, and K. U. Jansen, “Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models,” Antimicrob. Agents Chemother. 47(9), 2740–2748 (2003). [CrossRef] [PubMed]
  9. Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis (Edinb.) 89(Suppl 1), S15–S17 (2009). [CrossRef] [PubMed]
  10. V. Balasubramanian, E. H. Wiegeshaus, B. T. Taylor, and D. W. Smith, “Pathogenesis of tuberculosis: pathway to apical localization,” Tuber. Lung Dis. 75(3), 168–178 (1994). [CrossRef] [PubMed]
  11. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993). [CrossRef] [PubMed]
  12. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188(5-6), 267–273 (2001). [CrossRef]
  13. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002). [CrossRef] [PubMed]
  14. K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005). [CrossRef] [PubMed]
  15. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004). [CrossRef] [PubMed]
  16. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007). [CrossRef] [PubMed]
  17. J. Sun, C. Shu, B. Appiah, and R. Drezek, “Needle-compatible single fiber bundle image guide reflectance endoscope,” J. Biomed. Opt. 15(4), 040502 (2010). [CrossRef] [PubMed]
  18. T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008). [CrossRef] [PubMed]
  19. W. Zhong, J. P. Celli, I. Rizvi, Z. Mai, B. Q. Spring, S. H. Yun, and T. Hasan, “In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring,” Br. J. Cancer 101(12), 2015–2022 (2009). [CrossRef] [PubMed]
  20. M. Hirano, Y. Yamashita, and A. Miyakawa, “In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments,” Brain Res. 732(1-2), 61–68 (1996). [CrossRef] [PubMed]
  21. S. Gordon, S. Keshav, and M. Stein, “BCG-induced granuloma formation in murine tissues,” Immunobiology 191(4-5), 369–377 (1994). [PubMed]
  22. M. Goldgeier, C. A. Fox, J. M. Zavislan, D. Harris, and S. Gonzalez, “Noninvasive imaging, treatment, and microscopic confirmation of clearance of basal cell carcinoma,” Dermatol. Surg. 29(3), 205–210 (2003). [CrossRef] [PubMed]
  23. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005). [CrossRef] [PubMed]
  24. N. C. Deliolanis, R. Kasmieh, T. Wurdinger, B. A. Tannous, K. Shah, and V. Ntziachristos, “Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications,” J. Biomed. Opt. 13(4), 044008 (2008). [CrossRef] [PubMed]
  25. A. Mohan and S. K. Sharma, “Fibreoptic bronchoscopy in the diagnosis of sputum smear-negative pulmonary tuberculosis: current status,” Indian J. Chest Dis. Allied Sci. 50(1), 67–78 (2008). [PubMed]
  26. K. C. Ganguly, M. M. Hiron, Z. U. Mridha, M. Biswas, M. K. Hassan, S. C. Saha, and M. M. Rahman, “Comparison of sputum induction with broncho-alveolar lavage in the diagnosis of smear-negative pulmonary tuberculosis,” Mymensingh Med. J. 17(2), 115–123 (2008). [PubMed]
  27. Y. Kong, H. Yao, H. Ren, S. Subbian, S. L. Cirillo, J. C. Sacchettini, J. Rao, and J. D. Cirillo, “Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice,” Proc. Natl. Acad. Sci. U.S.A. 107(27), 12239–12244 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited