OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1184–1193

In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)

Joey Enfield, Enock Jonathan, and Martin Leahy  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1184-1193 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3084 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique that extends the capabilities of OCT to enable mapping of vasculature networks. The technique is achieved as a processing step on OCT intensity images that does not require any modification to existing OCT hardware. In this paper we apply the cmOCT processing technique to in vivo human imaging of the volar forearm. We illustrate that cmOCT can produce maps of the microcirculation that clearly follow the accepted anatomical structure. We demonstrate that the technique can extract parameters such as capillary density and vessel diameter. These parameters are key clinical markers for the early changes associated with microvascular diseases. Overall the presented results show that cmOCT is a powerful new tool that generates microcirculation maps in a safe non-invasive, non-contact technique which has clear clinical applications.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 7, 2011
Revised Manuscript: April 6, 2011
Manuscript Accepted: April 6, 2011
Published: April 13, 2011

Virtual Issues
In vivo Microcirculation Imaging (2011) Biomedical Optics Express

Joey Enfield, Enock Jonathan, and Martin Leahy, "In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)," Biomed. Opt. Express 2, 1184-1193 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Kohner, “Dynamic changes in the microcirculation of diabetics as related to diabetic microangiopathy,” Acta Med. Scand. Suppl. 578, 41–47 (1975). [PubMed]
  2. M. M. Smith, P. C. Chen, C. S. Li, S. Ramanujam, and A. T. Cheung, “Whole blood viscosity and microvascular abnormalities in Alzheimer’s Disease,” Clin. Hemorheol. Microcirc. 41(4), 229–239 (2009). [PubMed]
  3. J. Folkman, “Proceedings: Tumor angiogenesis factor,” Cancer Res. 34(8), 2109–2113 (1974). [PubMed]
  4. M. Cutolo, W. Grassi, and M. Matucci Cerinic, “Raynaud’s phenomenon and the role of capillaroscopy,” Arthritis Rheum. 48(11), 3023–3030 (2003). [CrossRef] [PubMed]
  5. R. H. Bull, D. O. Bates, and P. S. Mortimer, “Intravital video-capillaroscopy for the study of the microcirculation in psoriasis,” Br. J. Dermatol. 126(5), 436–445 (1992). [CrossRef] [PubMed]
  6. K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res. 66(4), 461–465 (2009). [CrossRef] [PubMed]
  7. Y. Kabasakal, D. M. Elvins, E. F. Ring, and N. J. McHugh, “Quantitative nailfold capillaroscopy findings in a population with connective tissue disease and in normal healthy controls,” Ann. Rheum. Dis. 55(8), 507–512 (1996). [CrossRef] [PubMed]
  8. C. C. Roberts, A. W. Stanton, J. Pullen, R. H. Bull, J. R. Levick, and P. S. Mortimer, “Skin microvascular architecture and perfusion studied in human postmastectomy oedema by intravital video-capillaroscopy,” Int. J. Microcirc. Clin. Exp. 14(6), 327–334 (1994). [CrossRef] [PubMed]
  9. J. O’Doherty, J. Henricson, C. Anderson, M. J. Leahy, G. E. Nilsson, and F. Sjöberg, “Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation,” Skin Res. Technol. 13(4), 472–484 (2007). [CrossRef] [PubMed]
  10. J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009). [CrossRef] [PubMed]
  11. M. J. Leahy, J. G. Enfield, N. T. Clancy, J. O'Doherty, P. McNamara, and G. E. Nilsson, “Biophotonic methods in microcirculation imaging,” Med. Laser Appl. 22(2), 105–126 (2007). [CrossRef]
  12. P. M. McNamara, J. O’Doherty, M. L. O’Connell, B. W. Fitzgerald, C. D. Anderson, G. E. Nilsson, R. Toll, and M. J. Leahy, “Tissue viability (TiVi) imaging: temporal effects of local occlusion studies in the volar forearm,” J Biophotonics 3(1-2), 66–74 (2010). [CrossRef] [PubMed]
  13. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 034032 (2006). [CrossRef] [PubMed]
  14. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T. J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008). [CrossRef] [PubMed]
  15. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30(6), 625–627 (2005). [CrossRef] [PubMed]
  16. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008). [CrossRef] [PubMed]
  17. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995). [CrossRef] [PubMed]
  18. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  19. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25(19), 1448–1450 (2000). [CrossRef] [PubMed]
  20. V. X. Yang, M. Gordon, S. J. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11(19), 2416–2424 (2003). [CrossRef] [PubMed]
  21. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005). [CrossRef] [PubMed]
  22. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  23. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  24. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  25. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  26. Y. Jung, Z. Zhi, and R. K. Wang, “Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo,” J. Biomed. Opt. 15(5), 050501 (2010). [CrossRef] [PubMed]
  27. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, X. Shi, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of microvascular perfusion within the intact cochlea in mice using ultra-high sensitive optical microangiography,” IEEE Trans. Med. Imaging 30(2), 224–230 (2011). [CrossRef] [PubMed]
  28. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010). [CrossRef] [PubMed]
  29. E. Jonathan, J. Enfield, and M. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4 (2010) (preprint), http://onlinelibrary.wiley.com/doi/10.1002/jbio.201000103/abstract
  30. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  31. P. Agache, P. Humbert, and H. Maibach, Measuring the Skin (Springer, 2004), p. 439.
  32. A. Prasad, G. S. Dunnill, P. S. Mortimer, and G. A. MacGregor, “Capillary rarefaction in the forearm skin in essential hypertension,” J. Hypertens. 13(2), 265–268 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (6395 KB)     
» Media 2: MOV (7331 KB)     
» Media 3: MOV (2480 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited