OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1204–1217

MEMS segmented-based adaptive optics scanning laser ophthalmoscope

Silvestre Manzanera, Michael A. Helmbrecht, Carl J. Kempf, and Austin Roorda  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 5, pp. 1204-1217 (2011)
http://dx.doi.org/10.1364/BOE.2.001204


View Full Text Article

Enhanced HTML    Acrobat PDF (1622 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies.

© 2011 OSA

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

History
Original Manuscript: March 10, 2011
Revised Manuscript: April 12, 2011
Manuscript Accepted: April 13, 2011
Published: April 13, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Citation
Silvestre Manzanera, Michael A. Helmbrecht, Carl J. Kempf, and Austin Roorda, "MEMS segmented-based adaptive optics scanning laser ophthalmoscope," Biomed. Opt. Express 2, 1204-1217 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-5-1204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19(17), 2991–2997 (1980). [CrossRef] [PubMed]
  2. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng. BME-28(7), 488–492 (1981). [CrossRef] [PubMed]
  3. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987). [CrossRef] [PubMed]
  4. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  5. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, “Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope,” Appl. Opt. 44(19), 4032–4040 (2005). [CrossRef] [PubMed]
  6. K. Venkateswaran, A. Roorda, and F. Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9(1), 132–138 (2004). [CrossRef] [PubMed]
  7. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953). [CrossRef]
  8. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999).
  9. R. Tyson, Principles of Adaptive Optics (CRC Press, 2010).
  10. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001). [CrossRef] [PubMed]
  11. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009). [CrossRef] [PubMed]
  12. P. Prieto, E. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004). [CrossRef] [PubMed]
  13. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998). [CrossRef] [PubMed]
  14. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  15. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26(10), 746–748 (2001). [CrossRef] [PubMed]
  16. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J. F. Le Gargasson, and P. Lena, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230(4-6), 225–238 (2004). [CrossRef]
  17. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express 13(11), 4275–4285 (2005). [CrossRef] [PubMed]
  18. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002). [CrossRef] [PubMed]
  19. Y. H. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  20. B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29(10), 1186–1190 (1990). [CrossRef]
  21. D. S. Acton and R. C. Smithson, “Solar imaging with a segmented adaptive mirror,” Appl. Opt. 31(16), 3161–3169 (1992). [CrossRef] [PubMed]
  22. M. C. Roggeman, V. M. Bright, B. M. Welsh, S. R. Hick, P. C. Roberts, W. D. Cowan, and J. H. Comtois, “Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results,” Opt. Eng. 36(5), 1326–1338 (1997). [CrossRef]
  23. W. D. Cowan, M. K. Lee, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Surface micromachined segmented mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 5(1), 90–101 (1999). [CrossRef]
  24. A. Tuantranont and V. M. Bright, “Segmented silicon-micromachined microelectromechanical deformable mirrors for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 8(1), 33–45 (2002). [CrossRef]
  25. D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Grine, M. J. Shaw, P. J. Resnick, and B. Jokiel, “Large-stroke MEMS deformable mirrors for adaptive optics,” J. Microelectromech. Syst. 15(3), 572–583 (2006). [CrossRef]
  26. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007). [CrossRef] [PubMed]
  27. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011). [CrossRef] [PubMed]
  28. J. I. W. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009). [CrossRef] [PubMed]
  29. E. A. Rossi, M. Chung, A. Dubra, J. J. Hunter, W. H. Merigan, and D. R. Williams, “Imaging retinal mosaics in the living eye,” Eye (Lond.) 25(3), 301–308 (2011). [CrossRef] [PubMed]
  30. D. Miller, L. Thibos, and X. Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13(1), 275–289 (2005). [CrossRef] [PubMed]
  31. M. A. Helmbrecht, M. He, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror for wavefront correction,” Proc. SPIE 6376, 63760D, 63760D-9 (2006). [CrossRef]
  32. J. W. Oliver, G. Pocock, R. Vincelette, S. Kumru, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “In vivo investigation of near infrared retinal lesions utilizing two adaptive optics enhanced imaging modalities,” Proc. SPIE 7175, 71750H, 71750H-9 (2009). [CrossRef]
  33. N. Doble, C. Kempf, M. Helmbrecht, and A. Roorda, “Closed loop adaptive optics in the human eye using a segmented MEMS deformable mirror,” Invest. Ophthalmol. Vis. Sci. 49, ARVO E-Abstract 4195 (2008).
  34. N. Doble and S. Choi, “Widefield imaging of the human retina using adaptive optics,” Invest. Ophthalmol. Vis. Sci. 50, ARVO E-Abstract 1062 (2009).
  35. T. Wilson, “The role of the pinhole in confocal imaging systems,” in The Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), pp. 99–113.
  36. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  37. K. Grieve, P. Tiruveedhula, Y. H. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006). [CrossRef] [PubMed]
  38. M. A. Helmbrecht and T. Juneau, “Piston-tip-tilt positioning of a segmented MEMS deformable mirror,” Proc. SPIE 6467, 64670M. (2007)
  39. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006). [CrossRef] [PubMed]
  40. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited