OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1243–1257

Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres

Brian M. Cummins, Jongdoo Lim, Eric E. Simanek, Michael V. Pishko, and Gerard L. Coté  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1243-1257 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Proper management of diabetes requires the frequent measurement of a patient’s blood glucose level. To create a long-term, minimally-invasive sensor that is sensitive to physiological concentrations of glucose a fluorescent glucose sensing assay using a competitive binding approach between fluorescently tagged Concanavalin-A (Con-A) and glycodendrimer is being developed. Until now, the essential step of effectively encapsulating this aggregative sensing assay while allowing a reversible response has yet to be reported. In this paper, a microporation technique is described in which microspheres are synthesized in a manner that creates fluid-filled pores within a poly (ethylene glycol) hydrogel. This dual-nature technique creates hydrophilic, biocompatible microcapsules in which the aggregative binding kinetics of the sensing assay within the pores are not constrained by spatial fixation in the hydrogel matrix. Confocal images displaying the localization of pockets filled with the assay within the polymeric matrix are presented in this paper. In addition, fluorescent responses to varying glucose concentrations, leaching studies, and long-term functionality of the encapsulated assay are demonstrated. To our knowledge, this is the first time that the Con-A/glycodendrimer assay has been shown to be reversible and repeatable within hydrogel spheres, including the display of functionality up to fourteen days under ambient conditions.

© 2011 Optical Society of America

OCIS Codes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: February 23, 2011
Revised Manuscript: March 25, 2011
Manuscript Accepted: April 12, 2011
Published: April 18, 2011

Brian M. Cummins, Jongdoo Lim, Eric E. Simanek, Michael V. Pishko, and Gerard L. Coté, "Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres," Biomed. Opt. Express 2, 1243-1257 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993). [CrossRef] [PubMed]
  2. D. M. Nathan, P. A. Cleary, J. Y. Backlund, S. M. Genuth, J. M. Lachin, T. J. Orchard, P. Raskin, B. ZinmanDiabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes,” N. Engl. J. Med. 353(25), 2643–2653 (2005). [CrossRef] [PubMed]
  3. American Diabetes Association, “Economic costs of diabetes in the U.S. In 2007,” Diabetes Care 31(3), 596–615 (2008). [PubMed]
  4. American Diabetes Association, “Standards of medical care in diabetes--2009,” Diabetes Care 32(Suppl 1), S13–S61 (2009). [CrossRef] [PubMed]
  5. C. L. Rohlfing, R. R. Little, H. M. Wiedmeyer, J. D. England, R. Madsen, M. I. Harris, K. M. Flegal, M. S. Eberhardt, D. E. Goldstein, “Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population,” Diabetes Care 23(2), 187–191 (2000). [CrossRef] [PubMed]
  6. J. Pickup, “Diabetic control and its measurements,” Textbook of Diabetes, third ed., 34.1–34.17, Blackwell (2003).
  7. I. B. Hirsch, D. Armstrong, R. M. Bergenstal, B. Buckingham, B. P. Childs, W. L. Clarke, A. Peters, H. Wolpert, “Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM),” Diabetes Technol. Ther. 10(4), 232–246 (2008). [CrossRef] [PubMed]
  8. R. J. McNichols, G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000). [CrossRef] [PubMed]
  9. J. Wang, “Glucose biosensors: 40 Years of advances and challenges,” Electroanalysis 13(12), 983–988 (2001). [CrossRef]
  10. N. S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009). [CrossRef] [PubMed]
  11. J. Lambert, J. Morookian, S. Sirk, M. Borchert, “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” J. Raman Spectrosc. 33(7), 524–529 (2002). [CrossRef]
  12. A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005). [CrossRef] [PubMed]
  13. D. Qi, A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007). [CrossRef] [PubMed]
  14. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010). [CrossRef] [PubMed]
  15. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26(13), 992–994 (2001). [CrossRef] [PubMed]
  16. V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite, R. O. Esenaliev, “Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography,” Exp. Biol. Med. (Maywood) 231(8), 1323–1332 (2006). [PubMed]
  17. H. A. MacKenzie, H. S. Ashton, Y. C. Shen, J. Lindberg, P. Rae, K. M. Quan, and S. Spiers, “Blood glucose measurements by photoacoustics,” in Biomedical Optical Spectroscopy and Diagnostics/Therapeutic Laser Applications, E. Sevick-Muraca and J. Izatt, eds., Vol. 22 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper BTuC1.
  18. R. Weiss, Y. Yegorchikov, A. Shusterman, I. Raz, “Noninvasive continuous glucose monitoring using photoacoustic technology-results from the first 62 subjects,” Diabetes Technol. Ther. 9(1), 68–74 (2007). [CrossRef] [PubMed]
  19. L. Zeng, G. Liu, D. Yang, Z. Ren, Z. Huang, “Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection,” Proc. SPIE 7280, 72802F (2009).
  20. R. R. Ansari, S. Böckle, L. Rovati, “New optical scheme for a polarimetric-based glucose sensor,” J. Biomed. Opt. 9(1), 103–115 (2004). [CrossRef] [PubMed]
  21. Q. Wan, G. L. Coté, J. B. Dixon, “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt. 10(2), 024029 (2005). [CrossRef] [PubMed]
  22. B. Malik, G. Coté, “Real-time dual wavelength polarimetry for glucose sensing,” Proc. SPIE 7186, 718604 (2009). [CrossRef]
  23. B. D. Cameron, J. S. Baba, G. L. Coté, “Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor,” Diabetes Technol. Ther. 3(2), 201–207 (2001). [CrossRef] [PubMed]
  24. B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006). [CrossRef] [PubMed]
  25. J. J. Burmeister, M. A. Arnold, G. W. Small, “Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues,” Diabetes Technol. Ther. 2(1), 5–16 (2000). [CrossRef] [PubMed]
  26. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.) 136(6), 1192–1198 (2011). [CrossRef] [PubMed]
  27. L. Tolosa, H. Malak, G. Raob, J. Lakowicz, “Optical assay for glucose based on the luminescnence decay time of the long wavelength dye Cy5,” Sens. Actuators B Chem. 45(2), 93–99 (1997). [CrossRef]
  28. R. J. Russell, M. V. Pishko, C. C. Gefrides, M. J. McShane, G. L. Coté, “A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel,” Anal. Chem. 71(15), 3126–3132 (1999). [CrossRef] [PubMed]
  29. S. D’Auria, N. Di Cesare, Z. Gryczynski, I. Gryczynski, M. Rossi, J. R. Lakowicz, “A thermophilic apoglucose dehydrogenase as nonconsuming glucose sensor,” Biochem. Biophys. Res. Commun. 274(3), 727–731 (2000). [CrossRef] [PubMed]
  30. M. J. McShane, “Potential for glucose monitoring with nanoengineered fluorescent biosensors,” Diabetes Technol. Ther. 4(4), 533–538 (2002). [CrossRef] [PubMed]
  31. R. Ballerstadt, A. Polak, A. Beuhler, J. Frye, “In vitro long-term performance study of a near-infrared fluorescence affinity sensor for glucose monitoring,” Biosens. Bioelectron. 19(8), 905–914 (2004). [CrossRef] [PubMed]
  32. J. Siegrist, T. Kazarian, C. Ensor, S. Joel, M. Madou, P. Wang, S. Daunert, “Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications,” Sens. Actuators B Chem. 149(1), 51–58 (2010). [CrossRef]
  33. B. L. Ibey, H. T. Beier, R. M. Rounds, G. L. Coté, V. K. Yadavalli, M. V. Pishko, “Competitive binding assay for glucose based on glycodendrimer-fluorophore conjugates,” Anal. Chem. 77(21), 7039–7046 (2005). [CrossRef] [PubMed]
  34. C. Huet, M. Lonchampt, M. Huet, A. Bernadac, “Temperature effects on the concanavalin A molecule and on concanavalin A binding,” Biochim. Biophys. Acta 365(1), 28–39 (1974). [PubMed]
  35. H. Bittiger and H. Schnebli, Concanavalin A as a Tool, John Wiley & Sons, (1976).
  36. J. S. Schultz, S. Mansouri, I. J. Goldstein, “Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites,” Diabetes Care 5(3), 245–253 (1982). [CrossRef] [PubMed]
  37. S. Mansouri and J. Schultz, “Optical glucose sensor based on reversible competitive binding,” IEEE, 112–115 (1984).
  38. R. Ballerstadt, J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring,” Anal. Chem. 72(17), 4185–4192 (2000). [CrossRef] [PubMed]
  39. R. Ballerstadt, C. Evans, R. McNichols, A. Gowda, “Concanavalin A for in vivo glucose sensing: a biotoxicity review,” Biosens. Bioelectron. 22(2), 275–284 (2006). [CrossRef] [PubMed]
  40. C. Kojima, K. Kono, K. Maruyama, T. Takagishi, “Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs,” Bioconjug. Chem. 11(6), 910–917 (2000). [CrossRef] [PubMed]
  41. D. A. Tomalia, L. A. Reyna, S. Svenson, “Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging,” Biochem. Soc. Trans. 35(1), 61–67 (2007). [CrossRef] [PubMed]
  42. M. Liu, K. Kono, J. M. Fréchet, “Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents,” J. Control. Release 65(1-2), 121–131 (2000). [CrossRef] [PubMed]
  43. M. T. Morgan, M. A. Carnahan, C. E. Immoos, A. A. Ribeiro, S. Finkelstein, S. J. Lee, M. W. Grinstaff, “Dendritic molecular capsules for hydrophobic compounds,” J. Am. Chem. Soc. 125(50), 15485–15489 (2003). [CrossRef] [PubMed]
  44. H. T. Chen, M. F. Neerman, A. R. Parrish, E. E. Simanek, “Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery,” J. Am. Chem. Soc. 126(32), 10044–10048 (2004). [CrossRef] [PubMed]
  45. M. F. Neerman, W. Zhang, A. R. Parrish, E. E. Simanek, “In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery,” Int. J. Pharm. 281(1-2), 129–132 (2004). [CrossRef] [PubMed]
  46. E. R. Gillies, J. M. Fréchet, “Dendrimers and dendritic polymers in drug delivery,” Drug Discov. Today 10(1), 35–43 (2005). [CrossRef] [PubMed]
  47. A. J. Velazquez, M. A. Carnahan, J. Kristinsson, S. Stinnett, M. W. Grinstaff, T. Kim, “New dendritic adhesives for sutureless ophthalmic surgical procedures: in vitro studies of corneal laceration repair,” Arch. Ophthalmol. 122(6), 867–870 (2004). [CrossRef] [PubMed]
  48. M. W. Grinstaff, “Biodendrimers: new polymeric biomaterials for tissue engineering,” Chemistry 8(13), 2838–2846 (2002). [CrossRef] [PubMed]
  49. P. Wu, X. Chen, N. Hu, U. C. Tam, O. Blixt, A. Zettl, C. R. Bertozzi, “Biocompatible carbon nanotubes generated by functionalization with glycodendrimers,” Angew. Chem. Int. Ed. Engl. 47(27), 5022–5025 (2008). [CrossRef] [PubMed]
  50. W. Turnbull, J. Stoddart, “Design and synthesis of glycodendrimer,” Rev. Mol. Biotechnol. 90(3–4), 231–255 (2002). [CrossRef]
  51. C. C. Lee, J. A. MacKay, J. M. Fréchet, F. C. Szoka, “Designing dendrimers for biological applications,” Nat. Biotechnol. 23(12), 1517–1526 (2005). [CrossRef] [PubMed]
  52. U. Gupta, H. B. Agashe, A. Asthana, N. K. Jain, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules 7(3), 649–658 (2006). [CrossRef] [PubMed]
  53. B. Ibey, H. Beier, R. Rounds, M. Pishko, and G. Coté, “Dendrimer based fluorescent glucose sensor for diabetic monitoring,” Progress in Biomedical Optics and Imaging - Proceedings of SPIE, (2006).
  54. S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, R. Langer, “Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres,” Pharm. Res. 08(6), 713–720 (1991). [CrossRef] [PubMed]
  55. W. R. Gombotz, S. Wee, “Protein release from alginate matrices,” Adv. Drug Deliv. Rev. 31(3), 267–285 (1998). [CrossRef] [PubMed]
  56. S. Freiberg, X. X. Zhu, “Polymer microspheres for controlled drug release,” Int. J. Pharm. 282(1-2), 1–18 (2004). [CrossRef] [PubMed]
  57. A. A. Antipov, G. B. Sukhorukov, “Polyelectrolyte multilayer capsules as vehicles with tunable permeability,” Adv. Colloid Interface Sci. 111(1-2), 49–61 (2004). [CrossRef] [PubMed]
  58. C. S. Peyratout, L. Dähne, “Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers,” Angew. Chem. Int. Ed. Engl. 43(29), 3762–3783 (2004). [CrossRef] [PubMed]
  59. Y. Zhu, J. Shi, W. Shen, X. Dong, J. Feng, M. Ruan, Y. Li, “Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure,” Angew. Chem. Int. Ed. Engl. 44(32), 5083–5087 (2005). [CrossRef] [PubMed]
  60. M. McShane and Y. Lvov, “Layer-by-Layer Electrostatic Self-Assembly,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition, ed. J. Schwarz, C. Contescu, K. Putyera, Eds.; Taylor & Francis, 1823–1840, (2009).
  61. O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, “Polymer microcapsules as mobile local pH-sensors,” J. Mater. Chem. 17(42), 4471–4476 (2007). [CrossRef]
  62. C. Gao, S. Moya, E. Donath, H. Möhwald, “Melamine formaldehyde core decomposition as the key step controlling capsule integrity: optimizing the polyelectrolyte capsule fabrication,” Macromol. Chem. Phys. 203(7), 953–960 (2002). [CrossRef]
  63. D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, “Protein encapsulation via porous CaCO3 microparticles templating,” Biomacromolecules 5(5), 1962–1972 (2004). [CrossRef] [PubMed]
  64. E. W. Stein, D. V. Volodkin, M. J. McShane, G. B. Sukhorukov, “Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase,” Biomacromolecules 7(3), 710–719 (2006). [CrossRef] [PubMed]
  65. J. Harris and S. Zalipsky, Poly(Ethylene Glycol) Chemistry and Biological Applications, Vol. 680 of ACS Symposium Series (American Chemical Society, 1997).
  66. M. B. Mellott, K. Searcy, M. V. Pishko, “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials 22(9), 929–941 (2001). [CrossRef] [PubMed]
  67. R. Russell, A. Axel, K. Shields, M. Pishko, “Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing,” Polymer (Guildf.) 42(11), 4893–4901 (2001). [CrossRef]
  68. R. M. Rounds, B. L. Ibey, H. T. Beier, M. V. Pishko, G. L. Coté, “Microporated PEG spheres for fluorescent analyte detection,” J. Fluoresc. 17(1), 57–63 (2006). [CrossRef] [PubMed]
  69. J. Lim, A. Chouai, S. T. Lo, W. Liu, X. Sun, E. E. Simanek, “Design, synthesis, characterization, and biological evaluation of triazine dendrimers bearing paclitaxel using ester and ester/disulfide linkages,” Bioconjug. Chem. 20(11), 2154–2161 (2009). [CrossRef] [PubMed]
  70. Invitrogen, Amine-Reactive Probes, Aug. 17, 2010, http://probes.invitrogen.com/media/pis/mp00143.pdf .
  71. E. Chang, D. Holguin, “Electrooptical light-management material: Low-refractive-index hydrogels,” J. Adhes. 83(1), 15–26 (2007). [CrossRef]
  72. W. M. Yunus, A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt. 27(16), 3341–3343 (1988). [CrossRef] [PubMed]
  73. M. Mcshane and E. Stein, “Fluorescence-based glucose sensors,” in In Vivo Glucose Sensing, D. D. Cunningham and J. A. Stenken , eds. (Wiley, (2010).
  74. F. Hussain, D. J. Birch, J. C. Pickup, “Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase,” Anal. Biochem. 339(1), 137–143 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited