OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1268–1274

In vivo volumetric imaging of chicken retina with ultrahigh-resolution spectral domain optical coherence tomography

Alireza Akhlagh Moayed, Sepideh Hariri, Eun Sun Song, Vivian Choh, and Kostadinka Bizheva  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1268-1274 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The chicken retina is an established animal model for myopia and light-associated growth studies. It has a unique morphology: it is afoveate and avascular; oxygen and nutrition to the inner retina is delivered by a vascular tissue (pecten) that protrudes into the vitreous. Here we present, to the best of our knowledge, the first in vivo, volumetric high-resolution images of the chicken retina. Images were acquired with an ultrahigh-resolution optical coherence tomography (UHROCT) system with 3.5 ┬Ám axial resolution in the retina, at the rate of 47,000 A-scans/s. Spatial variations in the thickness of the nerve fiber and ganglion cell layers were mapped by segmenting and measuring the layer thickness with a semi-automatic segmentation algorithm. Volumetric visualization of the morphology and morphometric analysis of the chicken retina could aid significantly studies with chicken retinal models of ophthalmic diseases.

© 2011 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

Original Manuscript: March 3, 2011
Revised Manuscript: April 2, 2011
Manuscript Accepted: April 15, 2011
Published: April 19, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Alireza Akhlagh Moayed, Sepideh Hariri, Eun Sun Song, Vivian Choh, and Kostadinka Bizheva, "In vivo volumetric imaging of chicken retina with ultrahigh-resolution spectral domain optical coherence tomography," Biomed. Opt. Express 2, 1268-1274 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wallman, J. Turkel, and J. Trachtman, “Extreme myopia produced by modest change in early visual experience,” Science 201(4362), 1249–1251 (1978). [CrossRef] [PubMed]
  2. E. L. Irving, M. G. Callender, and J. G. Sivak, “Inducing myopia, hyperopia, and astigmatism in chicks,” Optom. Vis. Sci. 68(5), 364–368 (1991). [CrossRef] [PubMed]
  3. C. F. Wildsoet and J. Wallman, “Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks,” Vision Res. 35(9), 1175–1194 (1995). [CrossRef] [PubMed]
  4. V. B. Morris, “An afoveate area centralis in the chick retina,” J. Comp. Neurol. 210(2), 198–203 (1982). [CrossRef] [PubMed]
  5. Y. Zhang, J. Xu, M. Garcia, A. Roorda, and C. Wildsoet, “In vivo imaging the photoreceptors in the chicken eye with adaptive optics scanning laser ophthalmoscope,” J. Vis. 9(14), 79–000 (2009). [CrossRef]
  6. K. Headington, S. S. Choi, D. Nickla, and N. Doble, “Single cell, in-vivo imaging of chick retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 51, Abstract 2321 (2010).
  7. M. L. Kisilak, J. J. Hunter, E. L. Irving, and M. C. W. Campbell, “In vivo imaging of photoreceptors in the alert chicken,” Invest. Ophthalmol. Vis. Sci. 48, Abstract 1191 (2007).
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  9. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–000 (1996). [CrossRef]
  10. Y. Huang, A. V. Cideciyan, G. I. Papastergiou, E. Banin, S. L. Semple-Rowland, A. H. Milam, and S. G. Jacobson, “Relation of optical coherence tomography to microanatomy in normal and rd chickens,” Invest. Ophthalmol. Vis. Sci. 39(12), 2405–2416 (1998). [PubMed]
  11. M. Ruggeri, J. C. Major, C. McKeown, R. W. Knighton, C. A. Puliafito, and S. Jiao, “Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(11), 5789–5795 (2010). [CrossRef] [PubMed]
  12. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33(21), 2479–2481 (2008). [PubMed]
  13. S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range,” Opt. Express 17(26), 24304–24316 (2009). [CrossRef] [PubMed]
  14. E. L. Irving, J. G. Sivak, T. A. Curry, and M. G. Callender, “Chick eye optics: zero to fourteen days,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179(2), 185–194 (1996). [CrossRef] [PubMed]
  15. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  16. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009). [CrossRef] [PubMed]
  17. I. G. Morgan, “Intraocular colchicine selectively destroys immature ganglion cells in chicken retina,” Neurosci. Lett. 24(3), 255–260 (1981). [CrossRef] [PubMed]
  18. V. Choh, J. Banh, and C. F. Wildsoet, “Thickness and histological changes in optic nerve-sectioned chick retina,” Invest. Ophthalmol. Vis. Sci. 45, E-Abstract 47 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (5219 KB)     
» Media 2: AVI (2335 KB)     
» Media 3: AVI (3269 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited