OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1282–1295

Optical delineation of human malignant melanoma using second harmonic imaging of collagen

C. Thrasivoulou, G. Virich, T. Krenacs, I. Korom, and D. L. Becker  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1282-1295 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Skin cancer incidence has increased exponentially over the last three decades. In 2008 skin cancer caused 2280 deaths in the UK, with 2067 due to malignant melanoma. Early diagnosis can prevent mortality, however, conventional treatment requires multiple procedures and increasing treatment times. Second harmonic generation (SHG) imaging could offer diagnosis and demarcation of melanoma borders non-invasively at presentation thereby short-cutting the excision biopsy stage. To test the efficacy and accuracy of SHG imaging of collagen in skin and to delineate the borders of skin cancers, unstained human melanoma biopsy sections were imaged using SHG microscopy. Comparisons with sister sections, stained with H&E or Melan-A were made for correlation of invasion borders. Fresh ex vivo normal human and rat skin was imaged through its whole thickness using SHG to demonstrate this technique is transferable to in vivo tissues. SHG imaging demonstrated detailed collagen distribution in normal skin, with total absence of SHG signal (fibrillar collagen) within the melanoma-invaded tissue. The presence or absence of signal changes dramatically at the borders of the melanoma, accurately demarcating the edges that strongly correlated with H&E and Melan-A defined borders (p<0.002). SHG imaging of ex vivo human and rat skin demonstrated collagen architecture could be imaged through the full thickness of the skin. We propose that SHG imaging could be used for diagnosis and accurate demarcation of melanoma borders on presentation and therefore potentially reduce mortality rates.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.1790) Microscopy : Confocal microscopy
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optics in Cancer Research

Original Manuscript: March 1, 2011
Revised Manuscript: April 6, 2011
Manuscript Accepted: April 19, 2011
Published: April 20, 2011

C. Thrasivoulou, G. Virich, T. Krenacs, I. Korom, and D. L. Becker, "Optical delineation of human malignant melanoma using second harmonic imaging of collagen," Biomed. Opt. Express 2, 1282-1295 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Cancer Research UK, “Statistical Information Team” (2010), http://info.cancerresearchuk.org/cancerstats/types/skin/incidence/ .
  2. ISD-Online, “Cancer incidence and mortality data” (2010), www.isdscotland.org/isd/183.html .
  3. Northern Ireland Cancer Registry, “Cancer incidence and mortality” (2008), www.qub.ac.uk/research-centres/nicr/Data/OnlineStatistics/MalignantMelanoma/ .
  4. Office for National Statistics, “Registrations of cancer diagnosed in 2005, England” (2008), www.statistics.gov.uk/statbase/Product.asp?vlnk=8843&More=N .
  5. Welsh Cancer Intelligence and Surveillance Unit, “Cancer incidence in Wales, 2003-2007” (2010), www.wales.nhs.uk/sites3/page.cfm?orgid=242&pid=35385 .
  6. S. Morris, B. Cox, and N. Bosanquet, “Cost of skin cancer in England,” Eur. J. Health Econ. 10(3), 267–273 (2009). [CrossRef] [PubMed]
  7. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005). [CrossRef] [PubMed]
  8. P. Eves, E. Katerinaki, C. Simpson, C. Layton, R. Dawson, G. Evans, and S. Mac Neil, “Melanoma invasion in reconstructed human skin is influenced by skin cells--investigation of the role of proteolytic enzymes,” Clin. Exp. Metastasis 20(8), 685–700 (2003). [CrossRef] [PubMed]
  9. N. Monhian, B. S. Jewett, S. R. Baker, and J. Varani, “Matrix metalloproteinase expression in normal skin associated with basal cell carcinoma and in distal skin from the same patients,” Arch. Facial Plast. Surg. 7(4), 238–243 (2005). [CrossRef] [PubMed]
  10. C. Ntayi, W. Hornebeck, and P. Bernard, “Influence of cultured dermal fibroblasts on human melanoma cell proliferation, matrix metalloproteinase-2 (MMP-2) expression and invasion in vitro,” Arch. Dermatol. Res. 295(6), 236–241 (2003). [CrossRef] [PubMed]
  11. J. Varani, Y. Hattori, Y. Chi, T. Schmidt, P. Perone, M. E. Zeigler, D. J. Fader, and T. M. Johnson, “Collagenolytic and gelatinolytic matrix metalloproteinases and their inhibitors in basal cell carcinoma of skin: comparison with normal skin,” Br. J. Cancer 82(3), 657–665 (2000). [CrossRef] [PubMed]
  12. F. Wach, A. M. Eyrich, T. Wustrow, T. Krieg, and R. Hein, “Comparison of migration and invasiveness of epithelial tumor and melanoma cells in vitro,” J. Dermatol. Sci. 12(2), 118–126 (1996). [CrossRef] [PubMed]
  13. E. Wandel, A. Raschke, G. Hildebrandt, J. Eberle, R. Dummer, U. Anderegg, and A. Saalbach, “Fibroblasts enhance the invasive capacity of melanoma cells in vitro,” Arch. Dermatol. Res. 293(12), 601–608 (2002). [CrossRef] [PubMed]
  14. J. Y. Scoazec, “Tissue and cell imaging in situ: potential for applications in pathology and endoscopy,” Gut 52(90004Suppl 4), 1iv–1iv (2003). [CrossRef] [PubMed]
  15. M. Lohela and Z. Werb, “Intravital imaging of stromal cell dynamics in tumors,” Curr. Opin. Genet. Dev. 20(1), 72–78 (2010). [CrossRef] [PubMed]
  16. J. Paoli, M. Smedh, and M. B. Ericson, “Multiphoton laser scanning microscopy--a novel diagnostic method for superficial skin cancers,” Semin. Cutan. Med. Surg. 28(3), 190–195 (2009). [CrossRef] [PubMed]
  17. M. H. Lien and V. K. Sondak, “Diagnostic techniques for primary cutaneous melanoma,” G. Ital. Dermatol. Venereol. 144(2), 187–194 (2009). [PubMed]
  18. S. Fine and W. P. Hansen, “Optical second harmonic generation in biological systems,” Appl. Opt. 10(10), 2350–2353 (1971). [CrossRef] [PubMed]
  19. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006). [CrossRef] [PubMed]
  20. C. J. R. Sheppard, J. N. Gannaway, R. Kompfner, and D. Walsh, “The scanning harmonic optical microscope,” IEEE J. Quantum Electron. 13(9), 912 (1977). [CrossRef]
  21. S. Roth and I. Freund, “Second harmonic-generation in collagen,” J. Chem. Phys. 70(4), 1637–1643 (1979). [CrossRef]
  22. P. P. Provenzano, K. W. Eliceiri, and P. J. Keely, “Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment,” Clin. Exp. Metastasis 26(4), 357–370 (2009). [CrossRef] [PubMed]
  23. A. Gerger, S. Koller, T. Kern, C. Massone, K. Steiger, E. Richtig, H. Kerl, and J. Smolle, “Diagnostic applicability of in vivo confocal laser scanning microscopy in melanocytic skin tumors,” J. Invest. Dermatol. 124(3), 493–498 (2005). [CrossRef] [PubMed]
  24. G. Cox, E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell, “3-dimensional imaging of collagen using second harmonic generation,” J. Struct. Biol. 141(1), 53–62 (2003). [CrossRef] [PubMed]
  25. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6(3), 277–286 (2001). [CrossRef] [PubMed]
  26. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005). [CrossRef] [PubMed]
  27. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003). [CrossRef] [PubMed]
  28. C. K. Sun, C. C. Chen, S. W. Chu, T. H. Tsai, Y. C. Chen, and B. L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003). [CrossRef] [PubMed]
  29. D. L. Cummins, J. M. Cummins, H. Pantle, M. A. Silverman, A. L. Leonard, and A. Chanmugam, “Cutaneous malignant melanoma,” Mayo Clin. Proc. 81(4), 500–507 (2006). [CrossRef] [PubMed]
  30. M. A. Weinstock, “Progress and prospects on melanoma: the way forward for early detection and reduced mortality,” Clin. Cancer Res. 12(7), 2297s–2300s (2006). [CrossRef] [PubMed]
  31. S. Kuphal, R. Bauer, and A. K. Bosserhoff, “Integrin signaling in malignant melanoma,” Cancer Metastasis Rev. 24(2), 195–222 (2005). [CrossRef] [PubMed]
  32. V. de Giorgi, D. Massi, C. Salvini, S. Sestini, and P. Carli, “Features of regression in dermoscopic diagnosis: a confounding factor? Two clinical, dermoscopic-pathologic case studies,” Dermatol. Surg. 32(2), 282–286 (2006). [CrossRef] [PubMed]
  33. T. Fikrle and K. Pizinger, “Dermatoscopic differences between atypical melanocytic naevi and thin malignant melanomas,” Melanoma Res. 16(1), 45–50 (2006). [CrossRef] [PubMed]
  34. D. S. Rigel, J. Russak, and R. Friedman, “The evolution of melanoma diagnosis: 25 years beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010). [CrossRef] [PubMed]
  35. T. Hompland, A. Erikson, M. Lindgren, T. Lindmo, and C. de Lange Davies, “Second-harmonic generation in collagen as a potential cancer diagnostic parameter,” J. Biomed. Opt. 13(5), 054050 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited