OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1340–1350

In vivo fluorescence lifetime optical projection tomography

James McGinty, Harriet B. Taylor, Lingling Chen, Laurence Bugeon, Jonathan R. Lamb, Margaret J. Dallman, and Paul M. W. French  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1340-1350 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1596 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions.

© 2011 OSA

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:

Original Manuscript: March 4, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 21, 2011
Published: April 26, 2011

Virtual Issues
July 22, 2011 Spotlight on Optics

James McGinty, Harriet B. Taylor, Lingling Chen, Laurence Bugeon, Jonathan R. Lamb, Margaret J. Dallman, and Paul M. W. French, "In vivo fluorescence lifetime optical projection tomography," Biomed. Opt. Express 2, 1340-1350 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem. 67(1), 509–544 (1998). [CrossRef] [PubMed]
  2. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9(2), 48–52 (1999). [CrossRef] [PubMed]
  3. E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotechnol. 21(11), 1387–1395 (2003). [CrossRef] [PubMed]
  4. M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006). [CrossRef] [PubMed]
  5. H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc. 124(48), 14286–14287 (2002). [CrossRef] [PubMed]
  6. T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron 27(3), 447–459 (2000). [CrossRef] [PubMed]
  7. N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001). [CrossRef] [PubMed]
  8. A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta 1760(8), 1274–1280 (2006). [PubMed]
  9. T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008). [CrossRef] [PubMed]
  10. I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett. 28(24), 1971–1982 (2006). [CrossRef] [PubMed]
  11. E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. Vanveen, P. M. Houpt, and Y. K. Levine, “Fluorescence lifetime imaging using a confocal laser scanning microscope,” Scanning 14, 155–159 (1992).
  12. X. F. Wang, A. Periasamy, B. Herman, and D. M. Coleman, “Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications,” Crit. Rev. Anal. Chem. 23(5), 369–395 (1992). [CrossRef]
  13. K. Dowling, S. C. W. Hyde, J. C. Dainty, P. W. W. French, and J. D. Hares, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” Opt. Commun. 135(1-3), 27–31 (1997). [CrossRef]
  14. C. B. Talbot, J. McGinty, D. M. Grant, E. J. McGhee, D. M. Owen, W. Zhang, T. D. Bunney, I. Munro, B. Isherwood, R. Eagle, A. Hargreaves, C. Dunsby, M. A. Neil, and P. M. W. French, “High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis,” J Biophotonics 1(6), 514–521 (2008). [CrossRef] [PubMed]
  15. A. Abbott, “Cell culture: biology’s new dimension,” Nature 424(6951), 870–872 (2003). [CrossRef] [PubMed]
  16. P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, “Life sciences require the third dimension,” Curr. Opin. Cell Biol. 18(1), 117–124 (2006). [CrossRef] [PubMed]
  17. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  18. D. Stockholm, M. Bartoli, G. Sillon, N. Bourg, J. Davoust, and I. Richard, “Imaging calpain protease activity by multiphoton FRET in living mice,” J. Mol. Biol. 346(1), 215–222 (2005). [CrossRef] [PubMed]
  19. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007). [CrossRef] [PubMed]
  20. G. T. Kennedy, H. B. Manning, D. S. Elson, M. A. A. Neil, G. W. Stamp, B. Viellerobe, F. Lacombe, C. Dunsby, and P. M. W. French, “A fluorescence lifetime imaging scanning confocal endomicroscope,” J Biophotonics 3(1-2), 103–107 (2010). [CrossRef] [PubMed]
  21. S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem 12(3), 609–626 (2011). [CrossRef] [PubMed]
  22. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  23. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007). [CrossRef] [PubMed]
  24. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002). [CrossRef] [PubMed]
  25. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008). [CrossRef] [PubMed]
  26. H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol. 52(8), 2035–2054 (2007). [CrossRef] [PubMed]
  27. M. Oldham, H. S. Sakhalkar, T. Oliver, G. Allan Johnson, and M. Dewhirst, “Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomography,” J. Biomed. Opt. 13(2), 021113 (2008). [CrossRef] [PubMed]
  28. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007). [CrossRef] [PubMed]
  29. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008). [CrossRef] [PubMed]
  30. U. J. Birk, M. Rieckher, N. Konstantinides, A. Darrell, A. Sarasa-Renedo, H. Meyer, N. Tavernarakis, and J. Ripoll, “Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography,” Biomed. Opt. Express 1(1), 87–96 (2010). [CrossRef] [PubMed]
  31. D. Beis and D. Y. R. Stainier, “In vivo cell biology: following the zebrafish trend,” Trends Cell Biol. 16(2), 105–112 (2006). [CrossRef] [PubMed]
  32. C. Parng, W. L. Seng, C. Semino, and P. McGrath, “Zebrafish: a preclinical model for drug screening,” Assay Drug Dev. Technol. 1(1), 41–48 (2002). [CrossRef] [PubMed]
  33. A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005). [CrossRef] [PubMed]
  34. T. P. Barros, W. K. Alderton, H. M. Reynolds, A. G. Roach, and S. Berghmans, “Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery,” Br. J. Pharmacol. 154(7), 1400–1413 (2008). [CrossRef] [PubMed]
  35. C. G. Burns, D. J. Milan, E. J. Grande, W. Rottbauer, C. A. MacRae, and M. C. Fishman, “High-throughput assay for small molecules that modulate zebrafish embryonic heart rate,” Nat. Chem. Biol. 1(5), 263–264 (2005). [CrossRef] [PubMed]
  36. G. Kari, U. Rodeck, and A. P. Dicker, “Zebrafish: an emerging model system for human disease and drug discovery,” Clin. Pharmacol. Ther. 82(1), 70–80 (2007). [CrossRef] [PubMed]
  37. M. J. Boot, C. H. Westerberg, J. Sanz-Ezquerro, J. Cotterell, R. Schweitzer, M. Torres, and J. Sharpe, “In vitro whole-organ imaging: 4D quantification of growing mouse limb buds,” Nat. Methods 5(7), 609–612 (2008). [CrossRef] [PubMed]
  38. J. McGinty, K. B. Tahir, R. Laine, C. B. Talbot, C. Dunsby, M. A. A. Neil, L. Quintana, J. Swoger, J. Sharpe, and P. M. W. French, “Fluorescence lifetime optical projection tomography,” J Biophotonics 1(5), 390–394 (2008). [CrossRef] [PubMed]
  39. C. Hall, M. V. Flores, T. Storm, K. Crosier, and P. Crosier, “The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish,” BMC Dev. Biol. 7(1), 42 (2007). [CrossRef] [PubMed]
  40. J. R. Mathias, M. E. Dodd, K. B. Walters, S. K. Yoo, E. A. Ranheim, and A. Huttenlocher, “Characterization of zebrafish larval inflammatory macrophages,” Dev. Comp. Immunol. 33(11), 1212–1217 (2009). [CrossRef] [PubMed]
  41. A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7(2), 149–154 (2010). [CrossRef] [PubMed]
  42. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004). [CrossRef]
  43. A. C. Kak and M. Slaney, “Principles of computerized tomographic imaging,” R. E. O’Malley ed. (SIAM, IEEE Press, New York, 1988).
  44. J. I. Agulleiro and J. J. Fernandez, “Fast tomographic reconstruction on multicore computers,” Bioinformatics 27(4), 582–583 (2011). [CrossRef] [PubMed]
  45. D. Castaño Díez, H. Mueller, and A. S. Frangakis, “Implementation and performance evaluation of reconstruction algorithms on graphics processors,” J. Struct. Biol. 157(1), 288–295 (2007). [CrossRef] [PubMed]
  46. R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decay,” Anal. Chem. 61(1), 30–33 (1989). [CrossRef]
  47. J. McGinty, J. Requejo-Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M A A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D Appl. Phys. 42(13), 135103 (2009). [CrossRef]
  48. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “Fluorescence lifetime imaging with picosecond resolution for biomedical applications,” Opt. Lett. 23(10), 810–812 (1998). [CrossRef] [PubMed]
  49. A. Esposito, H. C. Gerritsen, T. Oggier, F. Lustenberger, and F. S. Wouters, “Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics,” J. Biomed. Opt. 11(3), 034016 (2006). [CrossRef] [PubMed]
  50. L. K. van Geest and K. W. J. Stoop, “FLIM on a wide field fluorescence microscope,” Lett. Pept. Sci. 10(5-6), 501–510 (2003). [CrossRef]
  51. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52(10), 2775–2790 (2007). [CrossRef] [PubMed]
  52. V. Y. Soloviev and S. R. Arridge, “Optical Tomography in weakly scattering media in the presence of highly scattering inclusions,” Biomed. Opt. Express 2(3), 440–451 (2011). [CrossRef] [PubMed]
  53. C. Pardo-Martin, T. Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, and M. F. Yanik, “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010). [CrossRef] [PubMed]
  54. D. M. Owen, P. M. P. Lanigan, C. Dunsby, I. Munro, D. Grant, M. A. A. Neil, P. M. W. French, and A. I. Magee, “Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells,” Biophys. J. 90(11), L80–L82 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (852 KB)     
» Media 2: AVI (592 KB)     
» Media 3: AVI (469 KB)     
» Media 4: AVI (299 KB)     
» Media 5: AVI (329 KB)     
» Media 6: AVI (329 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited