OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 5 — May. 1, 2011
  • pp: 1351–1358

Variability in parafoveal cone mosaic in normal trichromatic individuals

Elise W. Dees, Alfredo Dubra, and Rigmor C. Baraas  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 5, pp. 1351-1358 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Parafoveal function is important for daily visual tasks such as reading. Here the variability in cone density along the four cardinal meridians in parafoveal regions of the retina was investigated in vivo using an adaptive optics fundus camera. Ten healthy normal trichromatic individuals were included in the study. There were significant differences in cone density between individuals at all four tested eccentricities (0.5, 1, 2 and 3°) and meridians. Cone density ranged from 34,900 to 63,000 cones/mm2 at 1° horizontally, and from 31,600 to 60,700 at 1° vertically. The results were consistent with those of Curcio et al. (1990), although between-individual variability is greater than previously reported in the parafovea from 1 to 3.2°.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.1720) Vision, color, and visual optics : Color vision
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Ophthalmology Applications

Original Manuscript: March 17, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: April 22, 2011
Published: April 26, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Elise W. Dees, Alfredo Dubra, and Rigmor C. Baraas, "Variability in parafoveal cone mosaic in normal trichromatic individuals," Biomed. Opt. Express 2, 1351-1358 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010). [CrossRef] [PubMed]
  2. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  3. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci. 9(02), 169–180 (1992). [CrossRef] [PubMed]
  4. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 3 (2005). [CrossRef] [PubMed]
  5. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007). [CrossRef] [PubMed]
  6. T. Y. Chui, H. Song, and S. A. Burns, “Individual variations in human cone photoreceptor packing density: variations with refractive error,” Invest. Ophthalmol. Vis. Sci. 49(10), 4679–4687 (2008). [CrossRef] [PubMed]
  7. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010). [CrossRef] [PubMed]
  8. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007). [CrossRef] [PubMed]
  9. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]
  10. J. Carroll, R. C. Baraas, M. Wagner-Schuman, J. Rha, C. A. Siebe, C. Sloan, D. M. Tait, S. Thompson, J. I. Morgan, J. Neitz, D. R. Williams, D. H. Foster, and M. Neitz, “Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin,” Proc. Natl. Acad. Sci. U.S.A. 106(49), 20948–20953 (2009). [CrossRef] [PubMed]
  11. J. Carroll, E. A. Rossi, J. Porter, J. Neitz, A. Roorda, D. R. Williams, and M. Neitz, “Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic,” Vision Res. 50(19), 1989–1999 (2010). [CrossRef] [PubMed]
  12. M. Wagner-Schuman, J. Neitz, J. Rha, D. R. Williams, M. Neitz, and J. Carroll, “Color-deficient cone mosaics associated with Xq28 opsin mutations: a stop codon versus gene deletions,” Vision Res. 50(23), 2396–2402 (2010). [CrossRef] [PubMed]
  13. R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24(5), 1438–1447 (2007). [CrossRef] [PubMed]
  14. J. Rha, B. Schroeder, P. Godara, and J. Carroll, “Variable optical activation of human cone photoreceptors visualized using a short coherence light source,” Opt. Lett. 34(24), 3782–3784 (2009). [CrossRef] [PubMed]
  15. American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2007).
  16. A. G. Bennett, A. R. Rudnicka, and D. F. Edgar, “Improvements on Littmann’s method of determining the size of retinal features by fundus photography,” Graefes Arch. Clin. Exp. Ophthalmol. 232(6), 361–367 (1994). [CrossRef] [PubMed]
  17. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  18. C. A. Curcio and K. A. Allen, “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990). [CrossRef] [PubMed]
  19. C. A. Curcio, C. L. Millican, K. A. Allen, and R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Vis. Sci. 34(12), 3278–3296 (1993). [PubMed]
  20. H. Wässle and H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. Lond. B Biol. Sci. 200(1141), 441–461 (1978). [CrossRef] [PubMed]
  21. M. B. Shapiro, S. J. Schein, and F. M. de Monasterio, “Regularity and structure of the spatial pattern of blue cones of the macaque retina,” J. Am. Stat. Assoc. 80(392), 803–812 (1985). [CrossRef]
  22. T. Y. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008). [CrossRef] [PubMed]
  23. D. W. Evans, Y. Wang, K. M. Haggerty, and L. N. Thibos, “Effect of sampling array irregularity and window size on the discrimination of sampled gratings,” Vision Res. 50(1), 20–30 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited