OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1412–1422

Comprehensive volumetric confocal microscopy with adaptive focusing

DongKyun Kang, Hongki Yoo, Priyanka Jillella, Brett E. Bouma, and Guillermo J. Tearney  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1412-1422 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett’s esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular.

© 2011 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal

ToC Category:
Endoscopes, Catheters and Micro-Optics

Original Manuscript: January 26, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: May 4, 2011
Published: May 4, 2011

DongKyun Kang, Hongki Yoo, Priyanka Jillella, Brett E. Bouma, and Guillermo J. Tearney, "Comprehensive volumetric confocal microscopy with adaptive focusing," Biomed. Opt. Express 2, 1412-1422 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. W. Falk, T. W. Rice, J. R. Goldblum, and J. E. Richter, “Jumbo biopsy forceps protocol still misses unsuspected cancer in Barrett’s esophagus with high-grade dysplasia,” Gastrointest. Endosc. 49(2), 170–176 (1999). [CrossRef] [PubMed]
  2. B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc. 65(6), 898–905 (2007). [CrossRef] [PubMed]
  3. M. J. Suter, B. J. Vakoc, P. S. Yachimski, M. Shishkov, G. Y. Lauwers, M. Mino-Kenudson, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging,” Gastrointest. Endosc. 68(4), 745–753 (2008). [CrossRef] [PubMed]
  4. M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010). [CrossRef] [PubMed]
  5. R. Kiesslich, J. Burg, M. Vieth, J. Gnaendiger, M. Enders, P. Delaney, A. Polglase, W. McLaren, D. Janell, S. Thomas, B. Nafe, P. R. Galle, and M. F. Neurath, “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology 127(3), 706–713 (2004). [CrossRef] [PubMed]
  6. R. Kiesslich, L. Gossner, M. Goetz, A. Dahlmann, M. Vieth, M. Stolte, A. Hoffman, M. Jung, B. Nafe, P. R. Galle, and M. F. Neurath, “In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy,” Clin. Gastroenterol. Hepatol. 4(8), 979–987 (2006). [CrossRef] [PubMed]
  7. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005). [CrossRef] [PubMed]
  8. R. Kiesslich, M. Goetz, J. Burg, M. Stolte, E. Siegel, M. J. Maeurer, S. Thomas, D. Strand, P. R. Galle, and M. F. Neurath, “Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy,” Gastroenterology 128(7), 2119–2123 (2005). [CrossRef] [PubMed]
  9. A. Meining, V. Phillip, J. Gaa, C. Prinz, and R. M. Schmid, “Pancreaticoscopy with miniprobe-based confocal laser-scanning microscopy of an intraductal papillary mucinous neoplasm (with video),” Gastrointest. Endosc. 69(6), 1178–1180 (2009). [CrossRef] [PubMed]
  10. L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2006). [CrossRef] [PubMed]
  11. H. Neumann, R. Kiesslich, M. B. Wallace, and M. F. Neurath, “Confocal laser endomicroscopy: technical advances and clinical applications,” Gastroenterology 139(2), 388–392e2 (2010). [CrossRef] [PubMed]
  12. M. W. Shahid and M. B. Wallace, “Endoscopic imaging for the detection of esophageal dysplasia and carcinoma,” Gastrointest. Endosc. Clin. N. Am. 20(1), 11–24, v (2010). [CrossRef] [PubMed]
  13. M. B. Wallace and R. Kiesslich, “Advances in endoscopic imaging of colorectal neoplasia,” Gastroenterology 138(6), 2140–2150 (2010). [CrossRef] [PubMed]
  14. A. Hoffman, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath, and R. Kiesslich, “Confocal laser endomicroscopy: technical status and current indications,” Endoscopy 38(12), 1275–1283 (2006). [CrossRef] [PubMed]
  15. T. J. Muldoon, S. Anandasabapathy, D. Maru, and R. Richards-Kortum, “High-resolution imaging in Barrett’s esophagus: a novel, low-cost endoscopic microscope,” Gastrointest. Endosc. 68(4), 737–744 (2008). [CrossRef] [PubMed]
  16. A. Meining, D. Saur, M. Bajbouj, V. Becker, E. Peltier, H. Höfler, C. H. von Weyhern, R. M. Schmid, and C. Prinz, “In vivo histopathology for detection of gastrointestinal neoplasia with a portable, confocal miniprobe: an examiner blinded analysis,” Clin. Gastroenterol. Hepatol. 5(11), 1261–1267 (2007). [CrossRef] [PubMed]
  17. H. Pohl, T. Rösch, M. Vieth, M. Koch, V. Becker, M. Anders, A. C. Khalifa, and A. Meining, “Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s oesophagus,” Gut 57(12), 1648–1653 (2008). [CrossRef] [PubMed]
  18. V. Becker, T. Vercauteren, C. H. von Weyhern, C. Prinz, R. M. Schmid, and A. Meining, “High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video),” Gastrointest. Endosc. 66(5), 1001–1007 (2007). [CrossRef] [PubMed]
  19. K. Loewke, D. Camarillo, W. Piyawattanametha, D. Breeden, and K. Salisbury, “Real-time image mosaicing with a hand-held dual-axes confocal microscope,” Proc. SPIE 6851, 68510F, 68510F-9 (2008). [CrossRef]
  20. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998). [CrossRef] [PubMed]
  21. D. Kang, M. J. Suter, C. Boudoux, H. Yoo, P. S. Yachimski, W. P. Puricelli, N. S. Nishioka, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, and G. J. Tearney, “Comprehensive imaging of gastroesophageal biopsy samples by spectrally encoded confocal microscopy,” Gastrointest. Endosc. 71(1), 35–43 (2010). [CrossRef] [PubMed]
  22. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett. 32(9), 1102–1104 (2007). [CrossRef] [PubMed]
  23. H. Park, B. Kim, J.-O. Park, and S.-J. Yoon, “A crawling based locomotive mechanism using a tiny ultrasonic linear actuator (TULA),” in 39th International Symposium on Robotics 2008 (International Federation of Robotics, Frankfort, Germany, 2008), pp. 85–90.
  24. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004). [CrossRef] [PubMed]
  25. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008). [CrossRef]
  26. V. X. D. Yang, Y. Mao, B. A. Standish, N. R. Munce, S. Chiu, D. Burnes, B. C. Wilson, I. A. Vitkin, P. A. Himmer, and D. L. Dickensheets, “Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking,” Opt. Lett. 31(9), 1262–1264 (2006). [CrossRef] [PubMed]
  27. D. L. Dickensheets, “Requirements of MEMS membrane mirrors for focus adjustment and aberration correction in endoscopic confocal and optical coherence tomography imaging instruments,” J. Micro/Nanolithogr. MEMS MOEMS 7(2), 021008–021009 (2008). [CrossRef]
  28. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  29. C.-S. Liu and P. D. Lin, “A miniaturized low-power VCM actuator for auto-focusing applications,” Opt. Express 16(4), 2533–2540 (2008). [CrossRef] [PubMed]
  30. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004). [CrossRef] [PubMed]
  31. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. i. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express 18(10), 9755–9764 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited