OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1432–1442

Vaporization of perfluorocarbon droplets using optical irradiation

Eric Strohm, Min Rui, Ivan Gorelikov, Naomi Matsuura, and Michael Kolios  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1432-1442 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (873 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micron-sized liquid perfluorocarbon (PFC) droplets are currently being investigated as activatable agents for medical imaging and cancer therapy. After injection into the bloodstream, superheated PFC droplets can be vaporized to a gas phase for ultrasound imaging, or for cancer therapy via targeted drug delivery and vessel occlusion. Droplet vaporization has been previously demonstrated using acoustic methods. We propose using laser irradiation as a means to induce PFC droplet vaporization using a method we term optical droplet vaporization (ODV). In order to facilitate ODV of PFC droplets which have negligible absorption in the infrared spectrum, optical absorbing nanoparticles were incorporated into the droplet. In this study, micron-sized PFC droplets loaded with silica-coated lead sulfide (PbS) nanoparticles were evaluated using a 1064 nm laser and ultra-high frequency photoacoustic ultrasound (at 200 and 375 MHz). The photoacoustic response was proportional to nanoparticle loading and successful optical droplet vaporization of individual PFC droplets was confirmed using photoacoustic, acoustic, and optical measurements. A minimum laser fluence of 1.4 J/cm2 was required to vaporize the droplets. The vaporization of PFC droplets via laser irradiation can lead to the activation of PFC agents in tissues previously not accessible using standard ultrasound-based techniques.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: March 14, 2011
Revised Manuscript: April 14, 2011
Manuscript Accepted: April 26, 2011
Published: May 4, 2011

Eric Strohm, Min Rui, Ivan Gorelikov, Naomi Matsuura, and Michael Kolios, "Vaporization of perfluorocarbon droplets using optical irradiation," Biomed. Opt. Express 2, 1432-1442 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. S. Cohn and M. M. Cushing, “Oxygen therapeutics: perfluorocarbons and blood substitute safety,” Crit. Care Clin. 25(2), 399–414 (2009). [CrossRef] [PubMed]
  2. M. Behan, D. O’Connell, R. F. Mattrey, and D. N. Carney, “Perfluorooctylbromide as a contrast agent for CT and sonography: preliminary clinical results,” AJR Am. J. Roentgenol. 160(2), 399–405 (1993). [PubMed]
  3. R. F. Mattrey, P. C. Hajek, V. M. Gylys-Morin, L. L. Baker, J. Martin, D. C. Long, and D. M. Long, “Perfluorochemicals as gastrointestinal contrast agents for MR imaging: preliminary studies in rats and humans,” AJR Am. J. Roentgenol. 148(6), 1259–1263 (1987). [PubMed]
  4. N. Matsuura, R. Williams, I. Gorelikov, J. Chaudhuri, J. Rowlands, K. Hynynen, S. Foster, P. Burns, and N. Resnik, “Nanoparticle-loaded perfluorocarbon droplets for imaging and therapy,” in Proceedings of the IEEE Ultrasonics Symposium (IEEE, New York, 2009), pp. 5–8.
  5. J. G. Riess and M. LeBlanc, “Solubility and transport phenomena in perfluorochemicals relevant to blood substitution and other biomedical applications,” Pure Appl. Chem. 54(12), 2383–2406 (1982). [CrossRef]
  6. M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010). [CrossRef] [PubMed]
  7. O. D. Kripfgans, J. B. Fowlkes, M. Woydt, O. P. Eldevik, and P. L. Carson, “In vivo droplet vaporization for occlusion therapy and phase aberration correction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 726–738 (2002). [CrossRef] [PubMed]
  8. T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003). [CrossRef] [PubMed]
  9. E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi, “Therapeutic applications of lipid-coated microbubbles,” Adv. Drug Deliv. Rev. 56(9), 1291–1314 (2004). [CrossRef] [PubMed]
  10. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000). [CrossRef] [PubMed]
  11. M. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010). [CrossRef] [PubMed]
  12. W. L. J. Hasi, Z. W. Lu, S. Gong, S. J. Liu, Q. Li, and W. M. He, “Investigation of stimulated Brillouin scattering media perfluoro-compound and perfluoropolyether with a low absorption coefficient and high power-load ability,” Appl. Opt. 47(7), 1010–1014 (2008). [CrossRef] [PubMed]
  13. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991). [CrossRef] [PubMed]
  14. E. M. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, “Optical droplet vaporization of micron-sized perfluorocarbon droplets and their photoacoustic detection,” Proc. SPIE 7899, 78993H, 78993H-7 (2011). [CrossRef]
  15. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003). [CrossRef] [PubMed]
  16. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. (Deerfield Beach Fla.) 15(21), 1844–1849 (2003). [CrossRef]
  17. I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008). [CrossRef] [PubMed]
  18. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” J. Am. Chem. Soc. 127(14), 4990–4991 (2005). [CrossRef] [PubMed]
  19. N. Matsuura, I. Gorelikov, R. Williams, K. Wan, S. Zhu, J. Booth, P. Burns, K. Hynynen, and J. A. Rowlands, “Nanoparticle-tagged perfluorocarbon droplets for medical imaging,” Mater. Res. Soc. Symp. Proc. 1140, 1–6 (2009).
  20. M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564, 756411, 756411-6 (2010). [CrossRef]
  21. E. M. Strohm, G. J. Czarnota, and M. C. Kolios, “Quantitative measurements of apoptotic cell properties using acoustic microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(10), 2293–2304 (2010). [CrossRef] [PubMed]
  22. J. N. Marsh, C. S. Hall, S. A. Wickline, and G. M. Lanza, “Temperature dependence of acoustic impedance for specific fluorocarbon liquids,” J. Acoust. Soc. Am. 112(6), 2858–2862 (2002). [CrossRef] [PubMed]
  23. V. S. Ardebili, A. N. Sinclair, and J. K. Spelt, “Ultrasonic couplants for acoustic microscopy of low speed materials,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(1), 102–107 (1997). [CrossRef] [PubMed]
  24. Z. Z. Wong, O. D. Kripfgans, A. Qamar, J. B. Fowlkes, and J. L. Bull, “Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging,” Soft Matter 7(8), 4009–4016 (2011). [CrossRef]
  25. E. M. Strohm, M. C. Kolios, I. Gorelikov, and N. Matsuura, “Optical droplet vaporization (ODV): photoacoustic characterization of perfluorocarbon droplets,” in Proceedings of the IEEE Ultrasonics Symposium (IEEE, New York, 2010) (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited