OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1443–1457

Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations

Kazuhiko Ohnuma, Hiroyuki Kayanuma, Tjundewo Lawu, Kazuno Negishi, Takefumi Yamaguchi, and Toru Noda  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1443-1457 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Correcting spherical and chromatic aberrations in vitro in human eyes provides substantial visual acuity and contrast sensitivity improvements. We found the same improvement in the retinal images using a model eye with/without correction of longitudinal chromatic aberrations (LCAs) and spherical aberrations (SAs). The model eye included an intraocular lens (IOL) and artificial cornea with human ocular LCAs and average human SAs. The optotypes were illuminated using a D65 light source, and the images were obtained using two-dimensional luminance colorimeter. The contrast improvement from the SA correction was higher than the LCA correction, indicating the benefit of an aspheric achromatic IOL.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: March 10, 2011
Revised Manuscript: April 21, 2011
Manuscript Accepted: April 21, 2011
Published: May 6, 2011

Kazuhiko Ohnuma, Hiroyuki Kayanuma, Tjundewo Lawu, Kazuno Negishi, Takefumi Yamaguchi, and Toru Noda, "Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations," Biomed. Opt. Express 2, 1443-1457 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. N. Thibos and A. Bradley, Wavefront Customized Visual Correction. The Quest for Super Vision II (SLACK Inc., Thorofare, N.J., 2003), Chap. 10.
  2. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008). [CrossRef] [PubMed]
  3. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999). [CrossRef] [PubMed]
  4. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16(11), 7748–7755 (2008). [CrossRef] [PubMed]
  5. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002). [CrossRef] [PubMed]
  6. J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24(9), 965–969 (2008). [PubMed]
  7. A. Franchini, “Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses,” J. Cataract Refract. Surg. 33(3), 497–509 (2007). [CrossRef] [PubMed]
  8. N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007). [CrossRef] [PubMed]
  9. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010). [CrossRef] [PubMed]
  10. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20(24), 4152–4155 (1981). [CrossRef] [PubMed]
  11. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  12. T. Terwee, H. Weeber, M. van der Mooren, and P. Piers, “Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses,” J. Refract. Surg. 24(3), 223–232 (2008). [PubMed]
  13. J. Choi and J. Schwiegerling, “Optical performance measurement and night driving simulation of ReSTOR, ReZoom, and Tecnis multifocal intraocular lenses in a model eye,” J. Refract. Surg. 24(3), 218–222 (2008). [PubMed]
  14. P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006). [CrossRef] [PubMed]
  15. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007). [CrossRef] [PubMed]
  16. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), Chap. 17.
  17. Handbook of Optics Vols, I and II, M. Bass, ed. (McGraw-Hill, New York, NY, 1994), Chaps. 34 and 35.
  18. Y. Le Grand, Optique Physiologique. Vol. 3: L’Espace Visual (Editions de la Revue d’Optique, Paris, France, 1956).
  19. M. Uematsu, Y. Goto, and Y. Kadowaki, “The new CA-2000 two-dimensional luminance colorimeter for impulse-type displays,” Konica Minolta Technol. Rep. 4, 65–68 (2007).
  20. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited