OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1470–1477

Real-time full field laser Doppler imaging

Marcel Leutenegger, Erica Martin-Williams, Pascal Harbi, Tyler Thacher, Wassim Raffoul, Marc André, Antonio Lopez, Philippe Lasser, and Theo Lasser  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 6, pp. 1470-1477 (2011)
http://dx.doi.org/10.1364/BOE.2.001470


View Full Text Article

Enhanced HTML    Acrobat PDF (1422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a full field laser Doppler imaging instrument, which enables real-time in vivo assessment of blood flow in dermal tissue and skin. This instrument monitors the blood perfusion in an area of about 50 cm2 with 480 × 480 pixels per frame at a rate of 12–14 frames per second. Smaller frames can be monitored at much higher frame rates. We recorded the microcirculation in healthy skin before, during and after arterial occlusion. In initial clinical case studies, we imaged the microcirculation in burned skin and monitored the recovery of blood flow in a skin flap during reconstructive surgery indicating the high potential of LDI for clinical applications. Small animal imaging in mouse ears clearly revealed the network of blood vessels and the corresponding blood perfusion.

© 2011 OSA

OCIS Codes
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Functional Imaging

History
Original Manuscript: March 22, 2011
Revised Manuscript: May 6, 2011
Manuscript Accepted: May 5, 2011
Published: May 9, 2011

Virtual Issues
In vivo Microcirculation Imaging (2011) Biomedical Optics Express

Citation
Marcel Leutenegger, Erica Martin-Williams, Pascal Harbi, Tyler Thacher, Wassim Raffoul, Marc André, Antonio Lopez, Philippe Lasser, and Theo Lasser, "Real-time full field laser Doppler imaging," Biomed. Opt. Express 2, 1470-1477 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. B. Niazi, T. J. Essex, R. Papini, D. Scott, N. R. McLean, and M. J. Black, “New laser Doppler scanner, a valuable adjunct in burn depth assessment,” Burns 19(6), 485–489 (1993). [CrossRef] [PubMed]
  2. K. Wårdell, A. Jakobsson, and G. E. Nilsson, “Laser Doppler perfusion imaging by dynamic light scattering,” IEEE Trans. Biomed. Eng. 40(4), 309–316 (1993). [CrossRef] [PubMed]
  3. S. A. Pape, C. A. Skouras, and P. O. Byrne, “An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth,” Burns 27(3), 233–239 (2001). [CrossRef] [PubMed]
  4. F. W. H. Kloppenberg, G. I. J. M. Beerthuizen, and H. J. ten Duis, “Perfusion of burn wounds assessed by laser doppler imaging is related to burn depth and healing time,” Burns 27(4), 359–363 (2001). [CrossRef] [PubMed]
  5. E. R. La Hei, A. J. A. Holland, and H. C. O. Martin, “Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination,” Burns 32(5), 550–553 (2006). [CrossRef] [PubMed]
  6. D. J. McGill, K. Sørensen, I. R. MacKay, I. Taggart, and S. B. Watson, “Assessment of burn depth: a prospective, blinded comparison of laser Doppler imaging and videomicroscopy,” Burns 33(7), 833–842 (2007). [CrossRef] [PubMed]
  7. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  8. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009). [CrossRef] [PubMed]
  9. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996). [CrossRef]
  10. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001). [CrossRef] [PubMed]
  11. P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007). [CrossRef]
  12. H. C. Eun, “Evaluation of skin blood flow by laser Doppler flowmetry,” Clin. Dermatol. 13(4), 337–347 (1995). [CrossRef] [PubMed]
  13. B. A. Kingwell, M. Formosa, M. Muhlmann, S. J. Bradley, and G. K. McConell, “Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation,” Diabetes Care 26(3), 899–904 (2003). [CrossRef] [PubMed]
  14. C. Pellaton, S. Kubli, F. Feihl, and B. Waeber, “Blunted vasodilatory responses in the cutaneous microcirculation of cigarette smokers,” Am. Heart J. 144(2), 269–274 (2002). [PubMed]
  15. A. K. Murray, A. L. Herrick, and T. A. King, “Laser Doppler imaging: a developing technique for application in the rheumatic diseases,” Rheumatology (Oxford) 43(10), 1210–1218 (2004). [CrossRef] [PubMed]
  16. M. L. Baker, E. K. Marino Larsen, L. H. Kuller, R. Klein, B. E. K. Klein, D. S. Siscovick, C. Bernick, T. A. Manolio, and T. Y. Wong, “Retinal microvascular signs, cognitive function, and dementia in older persons: the Cardiovascular Health Study,” Stroke 38(7), 2041–2047 (2007). [CrossRef] [PubMed]
  17. J. C. Palmer, S. Baig, P. G. Kehoe, and S. Love, “Endothelin-converting enzyme-2 is increased in Alzheimer’s disease and up-regulated by Abeta,” Am. J. Pathol. 175(1), 262–270 (2009). [CrossRef] [PubMed]
  18. A. Serov, W. Steenbergen, and F. de Mul, “Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor,” Opt. Lett. 27(5), 300–302 (2002). [CrossRef] [PubMed]
  19. A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Opt. Express 13(10), 3681–3689 (2005). [CrossRef] [PubMed]
  20. A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Opt. Express 13(17), 6416–6428 (2005). [CrossRef] [PubMed]
  21. A. Raabe, D. Van De Ville, M. Leutenegger, A. Szelényi, E. Hattingen, R. Gerlach, V. Seifert, C. Hauger, A. Lopez, R. Leitgeb, M. Unser, E. J. Martin-Williams, and T. Lasser, “Laser Doppler imaging for intraoperative human brain mapping,” Neuroimage 44(4), 1284–1289 (2009). [CrossRef] [PubMed]
  22. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17(5), 3211–3225 (2009). [CrossRef] [PubMed]
  23. S. A. Aïmago, Lausanne, Switzerland, http://www.aimago.com/ (Feb. 2011).
  24. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981). [CrossRef] [PubMed]
  25. A. P. Shepherd and P. Å. Öberg, eds., Laser-Doppler Blood Flowmetry (Kluwer Academic, Boston, 1990).
  26. H. Nilsson, “Photon migration in tissue. Laser induced fluorescence for cancer diagnostics and influence of optical properties on microvascular Doppler spectroscopy,” Ph.D. thesis (Faculty of Health Sciences, Linköpings Universitet, 2002).
  27. A. Serov, W. Steenbergen, and F. de Mul, “Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations,” J. Opt. Soc. Am. A 18(3), 622–630 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (10107 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited