OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1494–1503

Two-photon excited autofluorescence imaging of freshly isolated frog retinas

Rong-Wen Lu, Yi-Chao Li, Tong Ye, Christianne Strang, Kent Keyser, Christine A. Curcio, and Xin-Cheng Yao  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 6, pp. 1494-1503 (2011)
http://dx.doi.org/10.1364/BOE.2.001494


View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(330.5380) Vision, color, and visual optics : Physiology
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: March 3, 2011
Revised Manuscript: May 7, 2011
Manuscript Accepted: May 7, 2011
Published: May 11, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Citation
Rong-Wen Lu, Yi-Chao Li, Tong Ye, Christianne Strang, Kent Keyser, Christine A. Curcio, and Xin-Cheng Yao, "Two-photon excited autofluorescence imaging of freshly isolated frog retinas," Biomed. Opt. Express 2, 1494-1503 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. R. Jackson, C. Owsley, and C. A. Curcio, “Photoreceptor degeneration and dysfunction in aging and age-related maculopathy,” Ageing Res. Rev. 1(3), 381–396 (2002). [CrossRef] [PubMed]
  2. R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006). [CrossRef] [PubMed]
  3. B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007). [CrossRef] [PubMed]
  4. Y. Qin, G. Xu, and W. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006). [CrossRef] [PubMed]
  5. R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006). [CrossRef] [PubMed]
  6. R. W. Nickells, “Ganglion cell death in glaucoma: from mice to men,” Vet. Ophthalmol. 10(s1Suppl 1), 88–94 (2007). [CrossRef] [PubMed]
  7. B. Chance, “Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria,” Circ. Res. 38(5Suppl 1), I31–I38 (1976). [PubMed]
  8. S. Bearelly, A. A. Khanifar, D. E. Lederer, J. J. Lee, J. H. Ghodasra, S. S. Stinnett, and S. W. Cousins, “Use of fundus autofluorescence images to predict geographic atrophy progression,” Retina 31(1), 81–86 (2011). [CrossRef] [PubMed]
  9. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, and J. J. Weiter, “In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics,” Invest. Ophthalmol. Vis. Sci. 36(3), 718–729 (1995). [PubMed]
  10. O. La Schiazza and J. F. Bille, “High-speed two-photon excited autofluorescence imaging of ex vivo human retinal pigment epithelial cells toward age-related macular degeneration diagnostic,” J. Biomed. Opt. 13(6), 064008 (2008). [CrossRef] [PubMed]
  11. Y. Imanishi, K. H. Lodowski, and Y. Koutalos, “Two-photon microscopy: shedding light on the chemistry of vision,” Biochemistry 46(34), 9674–9684 (2007). [CrossRef] [PubMed]
  12. A. D. Marmorstein, L. Y. Marmorstein, H. Sakaguchi, and J. G. Hollyfield, “Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s Membrane, and sub-RPE deposits in normal and AMD eyes,” Invest. Ophthalmol. Vis. Sci. 43(7), 2435–2441 (2002). [PubMed]
  13. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, “Towards metabolic mapping of the human retina,” Microsc. Res. Tech. 70(5), 410–419 (2007). [CrossRef] [PubMed]
  14. J. C. Hwang, D. Y. Kim, C. L. Chou, and S. H. Tsang, “Fundus autofluorescence, optical coherence tomography, and electroretinogram findings in choroidal sclerosis,” Retina 30(7), 1095–1103 (2010). [CrossRef] [PubMed]
  15. A. Bindewald-Wittich, M. Han, S. Schmitz-Valckenberg, S. R. Snyder, G. Giese, J. F. Bille, and F. G. Holz, “Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:sapphire laser,” Invest. Ophthalmol. Vis. Sci. 47(10), 4553–4557 (2006). [CrossRef] [PubMed]
  16. Y. Hagiwara, K. Hattori, T. Aoki, H. Ohgushi, and H. Ito, “Autofluorescence assessment of extracellular matrices of a cartilage-like tissue construct using a fluorescent image analyser,” J. Tissue Eng. Regen. Med. 5(2), 163–168 (2011). [CrossRef] [PubMed]
  17. H. Hillman, T. Hussain, and P. Sartory, “Autofluorescence of isolated unfixed rabbit Deiters’ neurons and surrounding neuroglial clamps,” Experientia 29(9), 1113–1115 (1973). [CrossRef] [PubMed]
  18. K. C. Reinert, R. L. Dunbar, W. C. Gao, G. Chen, and T. J. Ebner, “Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo,” J. Neurophysiol. 92(1), 199–211 (2004). [CrossRef] [PubMed]
  19. J. I. Morgan, J. J. Hunter, W. H. Merigan, and D. R. Williams, “The reduction of retinal autofluorescence caused by light exposure,” Invest. Ophthalmol. Vis. Sci. 50(12), 6015–6022 (2009). [CrossRef] [PubMed]
  20. J. I. W. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009). [CrossRef] [PubMed]
  21. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008). [CrossRef] [PubMed]
  22. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, “Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope,” Appl. Opt. 44(19), 4032–4040 (2005). [CrossRef] [PubMed]
  23. C. H. Chen, E. Tsina, M. C. Cornwall, R. K. Crouch, S. Vijayaraghavan, and Y. Koutalos, “Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors,” Biophys. J. 88(3), 2278–2287 (2005). [CrossRef] [PubMed]
  24. Q. Q. Wu, C. H. Chen, and Y. Koutalos, “All-trans retinol in rod photoreceptor outer segments moves unrestrictedly by passive diffusion,” Biophys. J. 91(12), 4678–4689 (2006). [CrossRef] [PubMed]
  25. M. Han, A. Bindewald-Wittich, F. G. Holz, G. Giese, M. H. Niemz, S. Snyder, H. Sun, J. Y. Yu, M. Agopov, O. La Schiazza, and J. F. Bille, “Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells,” J. Biomed. Opt. 11(1), 010501 (2006). [CrossRef] [PubMed]
  26. M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Y. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt. 12(2), 024012 (2007). [CrossRef] [PubMed]
  27. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010). [CrossRef] [PubMed]
  28. E. J. Gualda, J. M. Bueno, and P. Artal, “Wavefront optimized nonlinear microscopy of ex vivo human retinas,” J. Biomed. Opt. 15(2), 026007 (2010). [CrossRef] [PubMed]
  29. L. L. Zhao, J. L. Qu, D. N. Chen, and H. B. Niu, “Layered-resolved autofluorescence imaging of photoreceptors using two-photon excitation,” J. Biomed. Sci. Eng. 02(05), 363–365 (2009). [CrossRef]
  30. P. Yan, A. Xie, M. Wei, and L. M. Loew, “Amino(oligo)thiophene-based environmentally sensitive biomembrane chromophores,” J. Org. Chem. 73(17), 6587–6594 (2008). [CrossRef] [PubMed]
  31. Y. C. Li, C. Strang, F. R. Amthor, L. Liu, Y. G. Li, Q. X. Zhang, K. Keyser, and X. C. Yao, “Parallel optical monitoring of visual signal propagation from the photoreceptors to the inner retina layers,” Opt. Lett. 35(11), 1810–1812 (2010). [CrossRef] [PubMed]
  32. Y. B. Zhao and X. C. Yao, “Intrinsic optical imaging of stimulus-modulated physiological responses in amphibian retina,” Opt. Lett. 33(4), 342–344 (2008). [CrossRef] [PubMed]
  33. Q. X. Zhang, J. Y. Wang, L. Liu, and X. C. Yao, “Microlens array recording of localized retinal responses,” Opt. Lett. 35(22), 3838–3840 (2010). [CrossRef] [PubMed]
  34. X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008). [CrossRef] [PubMed]
  35. Y. G. Li, Q. X. Zhang, L. Liu, F. R. Amthor, and X. C. Yao, “High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation,” Opt. Express 18(7), 7210–7218 (2010). [CrossRef] [PubMed]
  36. Y. G. Li, L. Liu, F. Amthor, and X. C. Yao, “High-speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina,” Opt. Lett. 35(3), 426–428 (2010). [CrossRef] [PubMed]
  37. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005). [CrossRef] [PubMed]
  38. X. C. Yao and J. S. George, “Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina,” J. Biomed. Opt. 11(6), 064030 (2006). [CrossRef] [PubMed]
  39. X. C. Yao and J. S. George, “Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals,” Neuroimage 33(3), 898–906 (2006). [CrossRef] [PubMed]
  40. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(03), 519–532 (1994). [CrossRef] [PubMed]
  41. S. E. Nilsson, “An electron microscopic classification of the retinal receptors of the leopard frog (Rana pipiens),” J. Ultrastruct. Res. 10(5-6), 390–416 (1964). [CrossRef] [PubMed]
  42. P. A. Liebman and G. Entine, “Visual pigments of frog and tadpole (Rana pipiens),” Vision Res. 8(7), 761–775, IN1–IN7 (1968). [CrossRef] [PubMed]
  43. V. Ramamurthy and M. Cayouette, “Development and disease of the photoreceptor cilium,” Clin. Genet. 76(2), 137–145 (2009). [CrossRef] [PubMed]
  44. T. Wakabayashi, M. Sawa, F. Gomi, and M. Tsujikawa, “Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa,” Acta Ophthalmol. (Copenh.) 88(5), e177–e183 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited