OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1553–1563

Laser speckle imaging in the spatial frequency domain

Amaan Mazhar, David J. Cuccia, Tyler B. Rice, Stefan A. Carp, Anthony J. Durkin, David A. Boas, Bernard Choi, and Bruce J. Tromberg  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 6, pp. 1553-1563 (2011)
http://dx.doi.org/10.1364/BOE.2.001553


View Full Text Article

Enhanced HTML    Acrobat PDF (1346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism.

© 2011 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: April 1, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 9, 2011
Published: May 13, 2011

Citation
Amaan Mazhar, David J. Cuccia, Tyler B. Rice, Stefan A. Carp, Anthony J. Durkin, David A. Boas, Bernard Choi, and Bruce J. Tromberg, "Laser speckle imaging in the spatial frequency domain," Biomed. Opt. Express 2, 1553-1563 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996). [CrossRef]
  2. S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. T. Hinds, “Quantitative temporal speckle contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A 24(12), 3728–3734 (2007). [CrossRef] [PubMed]
  3. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110–093111 (2005). [CrossRef]
  4. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001). [CrossRef] [PubMed]
  5. Y.-C. Huang, T. L. Ringold, J. S. Nelson, and B. Choi, “Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks,” Lasers Surg. Med. 40(3), 167–173 (2008). [CrossRef] [PubMed]
  6. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001). [CrossRef] [PubMed]
  7. D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE 7176, 717603, 717603-8 (2009). [CrossRef]
  8. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008). [CrossRef] [PubMed]
  9. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. Stuart Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” J. Biomed. Opt. 11(4), 041129 (2006). [CrossRef] [PubMed]
  10. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  11. S. Yuan, Y. Chen, A. K. Dunn, and D. a. Boas, “Noise analysis in laser speckle contrast imaging,” Animals 7563, 75630J (2010).
  12. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008). [CrossRef] [PubMed]
  13. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008). [CrossRef] [PubMed]
  14. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31(23), 3465–3467 (2006). [CrossRef] [PubMed]
  15. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). [CrossRef] [PubMed]
  16. M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009). [CrossRef] [PubMed]
  17. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009). [CrossRef] [PubMed]
  18. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005). [CrossRef] [PubMed]
  19. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt. 15(1), 010506 (2010). [CrossRef] [PubMed]
  20. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997). [CrossRef]
  21. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in Proc. SPIE, 2008), 6870E.
  22. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7664–7667 (1998). [CrossRef]
  23. B. Varghese, V. Rajan, T. G. Van Leeuwen, and W. Steenbergen, “Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry,” Opt. Express 18(3), 2849–2857 (2010). [CrossRef] [PubMed]
  24. V. Rajan, B. Varghese, T. G. Van Leeuwen, and W. Steenbergen, “Influence of tissue optical properties on laser Doppler perfusion imaging, accounting for photon penetration depth and the laser speckle phenomenon,” J. Biomed. Opt. 13(2), 024001 (2008). [CrossRef] [PubMed]
  25. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: multiple-exposure laser speckle analysis generates laser Doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010). [CrossRef] [PubMed]
  26. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and Imaging with Diffusing Temporal Field Correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995). [CrossRef] [PubMed]
  27. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001). [CrossRef] [PubMed]
  28. C. A. Thompson, K. J. Webb, and A. M. Weiner, “Diffusive media characterization with laser speckle,” Appl. Opt. 36(16), 3726–3734 (1997). [CrossRef] [PubMed]
  29. P. B. Jones, H. K. Shin, D. A. Boas, B. T. Hyman, M. A. Moskowitz, C. Ayata, and A. K. Dunn, “Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia,” J. Biomed. Opt. 13(4), 044007 (2008). [CrossRef] [PubMed]
  30. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express 17(17), 14780–14790 (2009). [CrossRef] [PubMed]
  31. J. R. Weber, D. J. Cuccia, and B. J. Tromberg, “Modulated imaging in layered media,” in Conf Proc IEEE Eng Med Biol Soc, 2006), 6674–6676.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited