OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1584–1596

Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance

Thomas Grosges, Dominique Barchiesi, Sameh Kessentini, Gérard Gréhan, and Marc Lamy de la Chapelle  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1584-1596 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optimization of the coated metallic nanoparticles and nanoshells is a current challenge for biological applications, especially for cancer photothermal therapy, considering both the continuous improvement of their fabrication and the increasing requirement of efficiency. The efficiency of the coupling between illumination with such nanostructures for burning purposes depends unevenly on their geometrical parameters (radius, thickness of the shell) and material parameters (permittivities which depend on the illumination wavelength). Through a Monte-Carlo method, we propose a numerical study of such nanodevice, to evaluate tolerances (or uncertainty) on these parameters, given a threshold of efficiency, to facilitate the design of nanoparticles. The results could help to focus on the relevant parameters of the engineering process for which the absorbed energy is the most dependant. The Monte-Carlo method confirms that the best burning efficiency are obtained for hollow nanospheres and exhibit the sensitivity of the absorbed electromagnetic energy as a function of each parameter. The proposed method is general and could be applied in design and development of new embedded coated nanomaterials used in biomedicine applications.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.2200) Scattering : Extinction

ToC Category:
Nanotechnology and Plasmonics

Original Manuscript: February 2, 2011
Revised Manuscript: April 22, 2011
Manuscript Accepted: May 6, 2011
Published: May 17, 2011

Thomas Grosges, Dominique Barchiesi, Sameh Kessentini, Gérard Gréhan, and Marc Lamy de la Chapelle, "Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance," Biomed. Opt. Express 2, 1584-1596 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999). [CrossRef]
  2. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef] [PubMed]
  3. Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002). [CrossRef] [PubMed]
  4. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  5. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005). [CrossRef] [PubMed]
  6. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J. Biomed. Mater. Res. 51, 293–298 (2000). [CrossRef] [PubMed]
  7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004). [CrossRef]
  8. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356–16359 (2000). [CrossRef]
  9. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000). [CrossRef]
  10. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003). [CrossRef]
  11. F. Tam and N. J. Halas, “Plasmon response of nanoshell dopants in organic films: a simulation study,” Prog. Org. Coat. 47, 275–278 (2003). [CrossRef]
  12. S. Link, Z.L. Wang, and M.A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529–3533 (1999). [CrossRef]
  13. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  14. K. L. Kelly, C. Eduardo, L .L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Chem. Phys. B 107 (3), 668–677 (2003). [CrossRef]
  15. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004). [CrossRef] [PubMed]
  16. D. Barchiesi, E. Kremer, V. P. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microsc. 229(3), 525–532 (2008). [CrossRef] [PubMed]
  17. D. Barchiesi, D. Macias, L. Belmar-Letellier, D. van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B, Lasers Opt. 93(1), 177–181 (2008). [CrossRef]
  18. C. Liu, C.C. Mi, and B.Q. Li, “Energy Absorption of Gold Nanoshells in Hyperthermia Therapy,” IEEE Transactions on Nanobioscience 7, 206–214 (2008). [CrossRef] [PubMed]
  19. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005). [CrossRef] [PubMed]
  20. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004). [CrossRef]
  21. T. Grosges, D. Barchesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett. 33(23), 2812–2814 (2008). [CrossRef] [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Willey & Sons, Inc., 2003).
  23. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908). [CrossRef]
  24. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  25. C. Gréhan, G. Gouesbet, and F. Guilloteau, “Comparison of the diffraction theory and the generalized lorenz-mie theory for a sphere arbitrarily located into a laser beam,” Opt. Commun. 90, 1–6 (1992). [CrossRef]
  26. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004). [CrossRef] [PubMed]
  27. T. Grosges, A. Vial, and D. Barchiesi, “Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods,” Opt. Express 13(21), 8483–8497 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8483 . [CrossRef]
  28. D. Barchiesi, B. Guizal, and T. Grosges, “Accuracy of local field enhancement models: toward predictive models?,” Appl. Phys. B, Lasers Opt. 84(1–2), 55–60 (2006).
  29. T. Grosges, H. Borouchaki, and D. Barchiesi, “Improved scheme for accurate computation of high electric near-field gradients,” Opt. Express 15(3), 1307–1321 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1307 . [CrossRef]
  30. H. Borouchaki, T. Grosges, and D. Barchiesi, “Improved 3D adaptive remeshing scheme applied in high electromagnetic field gradient computation,” Finite Elem. Anal. Des. 46(1–2), 84–95 (2010). [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solid I (Academic Press, 1985).
  32. D. Barchiesi and D. van Labeke, “Application of Mie scattering of evanescent waves to scanning optical microscopy theory,” J. Mod. Opt. 40(7), 1239–1254 (1993). [CrossRef]
  33. D. Macias, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in near-field optics,” J. Opt. Soc. Am. A 21, 1465–1471 (2004). [CrossRef]
  34. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110, 19935–19944 (2006). [CrossRef] [PubMed]
  35. Z. C. Xu, C. M. Shen, C. W. Xiao, T. Z. Yang, H. R. Zhang, J. Q. Li, and H. J. Gao, “Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles,” Nanotechnology 18, 115608 (2007). [CrossRef]
  36. D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proceedings of International Conference on Computers and Industrial Ingineering (CIE39), IEEE 1, 542–547 (2009).
  37. S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. Lamy de la Chapelle, “Adaptive non-uniform particle swarm optimization: application to plasmonic design,” Int. J. Appl. Meta. Comput. 2(1), 18–28 (2011).
  38. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (SIAM, 2005).
  39. F. A. Duck, Physical Properties of Tissue A Comprehensive Reference Book (Academic Press, 1990).
  40. P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31(16), 2474–2476 (2006). [CrossRef] [PubMed]
  41. W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A, Pure Appl. Opt. 11, 114002 (2009). [CrossRef]
  42. L. B. Scaffardi, M. Lester, D. Skigin, and J. O. Tocho, “Optical extinction spectroscopy used to characterize metallic nanowires,” Nanotechnology 18, 315402 (2007). [CrossRef]
  43. X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1(1), 13–28 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited