OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1610–1625

Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin

Luke J. Mortensen, Christopher E. Glazowski, James M. Zavislan, and Lisa A. DeLouise  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1610-1625 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Understanding the skin penetration of nanoparticles (NPs) is an important concern due to the increasing presence of NPs in consumer products, including cosmetics. Technical challenges have slowed progress in evaluating skin barrier and NP factors that contribute to skin penetration risk. To limit sampling error and other problems associated with histological processing, many researchers are implementing whole tissue confocal or multiphoton microscopies. This work introduces a fluorescence and reflectance confocal microscopy system that utilizes near-IR excitation and emission to detect near-IR lead sulfide quantum dots (QDs) through ex vivo human epidermis. We provide a detailed prediction and experimental analysis of QD detection sensitivity and demonstrate detection of QD skin penetration in a barrier disrupted model. The unique properties of near-IR lead-based QDs will enable future studies that examine the impact of further barrier-disrupting agents on skin penetration of QDs and elucidate mechanistic insight into QD tissue interactions at the cellular level.

© 2011 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(160.4236) Materials : Nanomaterials

ToC Category:
Nanotechnology and Plasmonics

Original Manuscript: March 21, 2011
Revised Manuscript: May 6, 2011
Manuscript Accepted: May 8, 2011
Published: May 19, 2011

Luke J. Mortensen, Christopher E. Glazowski, James M. Zavislan, and Lisa A. DeLouise, "Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin," Biomed. Opt. Express 2, 1610-1625 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Alvarez-Román, A. Naik, Y. N. Kalia, H. Fessi, and R. H. Guy, “Visualization of skin penetration using confocal laser scanning microscopy,” Eur. J. Pharm. Biopharm. 58(2), 301–316 (2004). [CrossRef] [PubMed]
  2. R. Alvarez-Román, A. Naik, Y. N. Kalia, R. H. Guy, and H. Fessi, “Skin penetration and distribution of polymeric nanoparticles,” J. Control. Release 99(1), 53–62 (2004). [CrossRef] [PubMed]
  3. X. Wu, P. Griffin, G. J. Price, and R. H. Guy, “Preparation and in vitro evaluation of topical formulations based on polystyrene-poly-2-hydroxyl methacrylate nanoparticles,” Mol. Pharmacol. 6(5), 1449–1456 (2009). [CrossRef]
  4. A. V. Zvyagin, X. Zhao, A. Gierden, W. Sanchez, J. A. Ross, and M. S. Roberts, “Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo,” J. Biomed. Opt. 13(6), 064031 (2008). [CrossRef]
  5. J. Moger, B. D. Johnston, and C. R. Tyler, “Imaging metal oxide nanoparticles in biological structures with CARS microscopy,” Opt. Express 16(5), 3408–3419 (2008). [CrossRef] [PubMed]
  6. L. J. Mortensen, G. Oberdorster, A. P. Pentland, and L. A. DeLouise, “In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR,” Nano Lett. 8(9), 2779–2787 (2008). [CrossRef] [PubMed]
  7. L. W. Zhang and N. A. Monteiro-Riviere, “Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin,” Skin Pharmacol. Appl. 21, 166–180 (2008). [CrossRef]
  8. N. V. Gopee, D. W. Roberts, P. Webb, C. R. Cozart, P. H. Siitonen, J. R. Latendresse, A. R. Warbitton, W. W. Yu, V. L. Colvin, N. J. Walker, and P. C. Howard, “Quantitative determination of skin penetration of PEG-coated CdSe quantum dots in dermabraded but not intact SKH-1 hairless mouse skin,” Toxicol. Sci. 111(1), 37–48 (2009). [CrossRef] [PubMed]
  9. S. Paliwal, G. K. Menon, and S. Mitragotri, “Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots,” J. Invest. Dermatol. 126(5), 1095–1101 (2006). [CrossRef] [PubMed]
  10. L. J. Mortensen, H. Zheng, R. Faulknor, A. De Benedetto, L. Beck, and L. A. DeLouise, “Increased in vivo skin penetration of quantum dots with UVR and in vitro quantum dot cytotoxicity,” Proc. SPIE 7189, 718919 (2009).
  11. J. Seto, B. Polat, R. Lopez, D. Blankschtein, and R. Langer, “Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: comparative in vitro studies with full-thickness and split-thickness pig and human skin,” J. Control. Release 145(1), 26–32 (2010). [CrossRef] [PubMed]
  12. H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, and J. V. Frangioni, “Renal clearance of quantum dots,” Nat. Biotechnol. 25(10), 1165–1170 (2007). [CrossRef] [PubMed]
  13. J. A. Fitzpatrick, S. K. Andreko, L. A. Ernst, A. S. Waggoner, B. Ballou, and M. P. Bruchez, “Long-term persistence and spectral blue shifting of quantum dots in vivo,” Nano Lett. 9(7), 2736–2741 (2009). [CrossRef] [PubMed]
  14. B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes, “Analytical methods to assess nanoparticle toxicity,” Analyst 134(3), 425–439 (2009). [CrossRef] [PubMed]
  15. N. A. Lewinski, V. L. Colvin, and R. A. Drezek, “Cytotoxicity of nanoparticles,” Small 4(1), 26–49 (2008). [CrossRef] [PubMed]
  16. P. Rivera Gil, G. Oberdörster, A. Elder, V. Puntes, and W. J. Parak, “Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future,” ACS Nano 4(10), 5527–5531 (2010). [CrossRef] [PubMed]
  17. M. J. Bartek, J. A. LaBudde, and H. I. Maibach, “Skin permeability in vivo: comparison in rat, rabbit, pig and man,” J. Invest. Dermatol. 58(3), 114–123 (1972). [CrossRef] [PubMed]
  18. T. J. Franz, “Percutaneous absorption on the relevance of in vitro data,” J. Invest. Dermatol. 64(3), 190–195 (1975). [CrossRef] [PubMed]
  19. R. L. Bronaugh and R. F. Stewart, “Methods for in vitro percutaneous absorption studies IV: The flow-through diffusion cell,” J. Pharm. Sci. 74(1), 64–67 (1985). [CrossRef] [PubMed]
  20. X. Wu, G. J. Price, and R. H. Guy, “Disposition of nanoparticles and an associated lipophilic permeant following topical application to the skin,” Mol. Pharmaceutics 6(5), 1441–1448 (2009). [CrossRef]
  21. R. F. Lopez, J. E. Seto, D. Blankschtein, and R. Langer, “Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate,” Biomaterials 32(3), 933–941 (2011). [CrossRef]
  22. M. S. Roberts, M. J. Roberts, T. A. Robertson, W. Sanchez, C. Thörling, Y. Zou, X. Zhao, W. Becker, and A. V. Zvyagin, “In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver,” J. Biophotonics 1(6), 478–493 (2008). [CrossRef]
  23. D. K. Bird, A. L. Schneider, A. C. Watkinson, B. Finnin, and T. A. Smith, “Navigating transdermal diffusion with multiphoton fluorescence lifetime imaging,” J. Microsc. 230, 61–69 (2008). [CrossRef] [PubMed]
  24. T.-R. Kuo, C.-L. Wu, C.-T. Hsu, W. Lo, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles,” Biomaterials 30(16), 3002–3008 (2009). [CrossRef] [PubMed]
  25. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt. 14(2), 021017 (2009). [CrossRef] [PubMed]
  26. M. Sirotkina, M. Shirmanova, M. Bugrova, V. Elagin, P. Agrba, M. Kirillin, V. Kamensky, and E. Zagaynova, “Continuous optical coherence tomography monitoring of nanoparticles accumulation in biological tissues,” J. Nanopart. Res. 13(1), 283–291 (2010). [CrossRef]
  27. X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” WIREs Nanomed. Nanobiotechnol. 2(4), 349–366 (2010). [CrossRef]
  28. H. S. Choi, B. Itty Ipe, P. Misra, J. H. Lee, M. G. Bawendi, and J. V. Frangioni, “Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots,” Nano Lett. 9(6), 2354–2359 (2009). [CrossRef] [PubMed]
  29. H. S. Choi, W. Liu, F. Liu, K. Nasr, P. Misra, M. G. Bawendi, and J. V. Frangioni, “Design considerations for tumour-targeted nanoparticles,” Nat. Nanotechnol. 5(1), 42–47 (2010). [CrossRef]
  30. M. Rajadhyaksha, S. Gonzalez, J. Zavislan, R. R. Anderson, and R. Webb, “In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology,” J. Invest. Dermatol. 113, 293–303 (1999). [CrossRef] [PubMed]
  31. Z. Wang, C. E. Glazowski, and J. M. Zavislan, “Modulation transfer function measurement of scanning reflectance microscopes,” J. Biomed. Opt. 12(5), 051802 (2007). [CrossRef] [PubMed]
  32. S. Empedocles, R. Neuhauser, and M. Bawendi, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999). [CrossRef]
  33. M. J. van Gemert, S. L. Jacques, H. J. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36(12), 1146–1154 (1989). [CrossRef] [PubMed]
  34. S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, and M. S. Patterson, “Anisotropy of light propagation in human skin,” Phys. Med. Biol. 45(10), 2873–2886 (2000). [CrossRef] [PubMed]
  35. S. H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13(1), 014016 (2008). [CrossRef] [PubMed]
  36. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17, 14599–14617 (2009). [CrossRef] [PubMed]
  37. C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–290 (2011). [CrossRef] [PubMed]
  38. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981). [CrossRef] [PubMed]
  39. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998). [CrossRef] [PubMed]
  40. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of cdse nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002). [CrossRef]
  41. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006). [CrossRef] [PubMed]
  42. B.-R. Hyun, H. Chen, D. A. Rey, F. W. Wise, and C. A. Batt, “Near-infrared fluorescence imaging with water-soluble lead salt quantum dots,” J. Phys. Chem. B 111(20), 5726–5730 (2007). [CrossRef] [PubMed]
  43. S. Ravichandran, L. J. Mortensen, and L. A. DeLouise, “Quantification of human skin barrier function and susceptibility to quantum dot skin penetration,” Nanotoxicology Early Online, 1–12 (2010). [CrossRef]
  44. T. Dutkiewicz and H. Tyras, “Skin absorption of toluene, styrene, and xylene by man,” Br. J. Ind. Med. 25(3), 243 (1968).
  45. H. Tsuruta, “Percutaneous absorption of organic solvents. III. On the penetration rates of hydrophobic solvents through the excised rat skin,” Ind. Health 20(4), 335–345 (1982). [CrossRef] [PubMed]
  46. N. V. Gopee, D. W. Roberts, P. Webb, C. R. Cozart, P. H. Siitonen, A. R. Warbritton, W. W. Yu, V. L. Colvin, N. J. Walker, and P. C. Howard, “Migration of intradermally injected quantum dots to sentinel organs in mice,” Toxicol. Sci. 98(1), 249–257 (2007). [CrossRef] [PubMed]
  47. F. F. Larese, F. D’Agostin, M. Crosera, G. Adami, N. Renzi, M. Bovenzi, and G. Maina, “Human skin penetration of silver nanoparticles through intact and damaged skin,” Toxicology 255, 33–37 (2009). [CrossRef]
  48. B. Gulson, M. McCall, M. Korsch, L. Gomez, P. Casey, Y. Oytam, A. Taylor, M. McCulloch, J. Trotter, L. Kinsley, and G. Greenoak, “Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin,” Toxicol. Sci. 118(1), 140–149 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited