OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1626–1636

Cramer-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging

M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 6, pp. 1626-1636 (2011)
http://dx.doi.org/10.1364/BOE.2.001626


View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a Cramer-Rao analysis, we study the theoretical performances of a time and spatially resolved fDOT imaging system for jointly estimating the position and the concentration of a point-wide fluorescent volume in a diffusive sample. We show that the fluorescence lifetime is a critical parameter for the precision of the technique. A time resolved fDOT system that does not use spatial information is also considered. In certain cases, a simple steady-state configuration may be as efficient as this time resolved fDOT system.

© 2011 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Diffuse Optical Imaging

History
Original Manuscript: January 21, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 15, 2011
Published: May 19, 2011

Citation
M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, "Cramer-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging," Biomed. Opt. Express 2, 1626-1636 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1626


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313 (2005). [CrossRef] [PubMed]
  2. A. H. Hielscher, “Optical Tomographic Imaging of small animals,” Curr. Opin. Biotechnol. 16, 79 (2005). [CrossRef] [PubMed]
  3. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005). [CrossRef] [PubMed]
  4. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901 (2003). [CrossRef] [PubMed]
  5. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360° geometry projections,” Opt. Lett. 32, 382 (2007). [CrossRef] [PubMed]
  6. G. Y. Panasyuk, Z.-M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33, 1744 (2008). [CrossRef] [PubMed]
  7. D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29, 2258 (2004). [CrossRef] [PubMed]
  8. P. Gallant, A. Belenkov, G. Ma, F. Lesage, Y. Wang, D. Hall, and L. McIntosh, “A quantitative time-domain optical imager for small animals in vivo fluorescence studies,” in Biomedical Topical Meeting, OSA Technical Digest (Optical Society of America, 2004), paper WD2.
  9. M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369 (2010). [CrossRef] [PubMed]
  10. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inv. Probl. 25, 3010 (2009). [CrossRef]
  11. V. Y. Soloviev, C. D’Andrea, G. Valentini, R. Cubeddu, and S. R. Arridge, “Combined reconstruction of fluorescent and optical parameters using time-resolved data,” Appl. Opt. 48, 28 (2009). [CrossRef]
  12. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett. 35, 3189 (2010). [CrossRef] [PubMed]
  13. M. Boffety, M. Allain, A. Sentenac, M. Massonneau, and R. Carminati, “Analysis of the depth resolution limit of luminescence diffuse optical imaging,” Opt. Lett. 33, 2290 (2008). [CrossRef] [PubMed]
  14. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444 (2009). [CrossRef]
  15. N. Ducros, A. Da Silva, L. Hervé, J.-M. Dinten, and F. Peyrin, “A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. Three dimensional reconstructions,” Phys. Med. Biol. 54, 7107 (2009). [CrossRef] [PubMed]
  16. A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, “Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid,” Appl. Opt. 44, 2300 (2005). [CrossRef] [PubMed]
  17. D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantitative fluorescence imaging of point-like sources in small animals,” Phys. Med. Biol. 53, 5797 (2008). [CrossRef] [PubMed]
  18. A. Sarasa-Renedo, R. Favicchio, U. Birk, G. Zacharakis, C. Mamalaki, and J. Ripoll, “Source intensity profile in noncontact optical tomography,” Opt. Lett. 35, 34 (2010). [CrossRef] [PubMed]
  19. J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91, 10 (2003). [CrossRef]
  20. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13, 041302 (2008). [CrossRef] [PubMed]
  21. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893 (2001). [CrossRef]
  22. The temporal pulse of the excitation is assumed to be a Dirac function. However, any pulse shape s(t) for the excitation can be considered since its contribution can be incorporated into R(t) if the temporal response s(t) ★tR(t) is considered instead of R(t) in Eq. (1).
  23. L. V. Wang and H. Hu, Biomedical Optics (Wiley, 2007), Sec. 7.7.
  24. E. Sevick-Muraca and C. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928 (1994).
  25. M. O’Leary, D. Boas, X. Li, B. Chance, and A. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996). [CrossRef]
  26. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353 (2010). [CrossRef] [PubMed]
  27. A. Ishimaru, “Wave propagation and scattering in random media,” (IEEE Press, 1997), p. 179.
  28. M. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non- invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331 (1989). [CrossRef] [PubMed]
  29. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963 (1994).
  30. F. Martelli, D. Contini, A. Taddeucci, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation, II. comparison with Monte Carlo results,” Appl. Opt. 36, 4600 (1997). [CrossRef] [PubMed]
  31. L. V. Wang and S. L. Jacques, “Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory,” Comput. Meth. Prog. Bio. 61, 163 (2000). [CrossRef]
  32. For the TD-fDOT configuration considered in Sec. 2, the total number of measurements is N = K × P × Ns with Ns the number of excitation sources. For the CW-fDOT and ITD-fDOT setups, the number of measurements reduces to N = K × Ns and N = P × Ns, respectively.
  33. For Poisson noise, both the mean and the variance are equal so that the signal to noise ratio (SNR) the j-th data bin is 〈mj〉1/2 —i.e. the SNR increases with the expected number of detection in the bin.
  34. P. Réfrégier, Noise Theory and Application to Physics: From Fluctuation to Information (Springer, 2004), Sec. 7.8.
  35. Provided that we restrict our analysis to the class of unbiased estimators (i.e., to estimator that are free of systematic errors), the Cramer-Rao bounds does not depend on the method used to estimate the parameters; see [34] for details.
  36. P. Réfrégier, Noise Theory and Application to Physics: From Fluctuation to Information (Springer, 2004), p. 181.
  37. R. A. Fisher, Statistical Methods and Scientific Inference (Oliver & Boyd, 1956).
  38. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics , Vol. 1, (Griffin, 1963), p. 57.
  39. Since the average number of detected photons for the considered fDOT systems is proportional to η × σ [cf. Eq. (3), (4) and (5)], the precision limits are scaled by the product (η × σ)−1/2. As a result, changing the parameters η and/or σ would only scale the normalized CRB shown in Fig. 4 and 5.
  40. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30, 3347 (2005). [CrossRef]
  41. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl Opt. 34, 8038 (1995). [CrossRef] [PubMed]
  42. A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, and D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography,” Opt. Lett. 33, 470 (2008). [CrossRef] [PubMed]
  43. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 8, 1152 (2008). [CrossRef]
  44. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131 (2007). [CrossRef] [PubMed]
  45. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, and R. P. Millane , “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035 (2004). [CrossRef]
  46. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5537 (1998). [CrossRef]
  47. R. Roy and E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited