OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1649–1662

Customized eye models for determining optimized intraocular lenses power

Carmen Canovas and Pablo Artal  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1649-1662 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a new optical procedure to determine the optimum power of intraocular lenses (IOLs) for cataract surgery. The procedure is based on personalized eye models, where biometric data of anterior corneal shape and eye axial length are used. A polychromatic exact ray-tracing through the surfaces defining the eye model is performed for each possible IOL power and the area under the radial MTF is used as a metric. The IOL power chosen by the procedure maximizes this parameter. The IOL power for 19 normal eyes has been determined and compared with standard regression-based predictions. The impact of the anterior corneal monochromatic aberrations and the eye’s chromatic aberration on the power predictions has been studied, being significant for those eyes with severe monochromatic aberrations, such as post-LASIK cataract patients, and for specific IOLs with low Abbe numbers.

© 2011 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Ophthalmology Applications

Original Manuscript: March 16, 2011
Revised Manuscript: April 10, 2011
Manuscript Accepted: May 19, 2011
Published: May 20, 2011

Carmen Canovas and Pablo Artal, "Customized eye models for determining optimized intraocular lenses power," Biomed. Opt. Express 2, 1649-1662 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. J. Dupps., “Intraocular lens calculations: call for more deterministic models,” J. Cataract Refract. Surg. 36(9), 1447–1448 (2010). [CrossRef] [PubMed]
  2. W. Haigis, “Intraocular lens calculation in extreme myopia,” J. Cataract Refract. Surg. 35(5), 906–911 (2009). [CrossRef] [PubMed]
  3. K. J. Hoffer, “Intraocular lens power calculation for eyes after refractive keratotomy,” J. Refract. Surg. 11(6), 490–493 (1995). [PubMed]
  4. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120(9), 1143–1151 (2002). [PubMed]
  5. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002). [PubMed]
  6. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32(4), 406–408 (2007). [CrossRef] [PubMed]
  7. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47(10), 4651–4658 (2006). [CrossRef] [PubMed]
  8. W. Haigis, “The Haigis formula,” in Intraocular Lens power calculations, J. Shammas, ed. (Slack Incorporated, 2004).
  9. K. J. Hoffer, “The Hoffer Q formula: a comparison of theoretic and regression formulas,” J. Cataract Refract. Surg. 19(6), 700–712 (1993). [PubMed]
  10. J. T. Holladay, T. C. Prager, T. Y. Chandler, K. H. Musgrove, J. W. Lewis, and R. S. Ruiz, “A three-part system for refining intraocular lens power calculations,” J. Cataract Refract. Surg. 14(1), 17–24 (1988). [PubMed]
  11. J. A. Retzlaff, D. R. Sanders, and M. C. Kraff, “Development of the SRK/T intraocular lens implant power calculation formula,” J. Cataract Refract. Surg. 16(3), 333–340 (1990). [PubMed]
  12. J. Shammas, “Basic optics for intraocular lens power calculations,” in Intraocular Lens Power Calculations, J. Shammas, ed. (Slack Incorporated, 2004).
  13. P. C. Hoffmann and W. W. Hütz, “Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes,” J. Cataract Refract. Surg. 36(9), 1479–1485 (2010). [CrossRef] [PubMed]
  14. S. Norrby, “Using the lens haptic plane concept and thick-lens ray tracing to calculate intraocular lens power,” J. Cataract Refract. Surg. 30(5), 1000–1005 (2004). [CrossRef] [PubMed]
  15. T. Olsen, “The Olsen formula,” in Intraocular Lens Power Calculations, Shammas J, ed. (Slack Incorporated, 2004).
  16. P. R. Preussner, J. Wahl, H. Lahdo, B. Dick, and O. Findl, “Ray tracing for intraocular lens calculation,” J. Cataract Refract. Surg. 28(8), 1412–1419 (2002). [CrossRef] [PubMed]
  17. P. R. Preussner, T. Olsen, P. Hoffmann, and O. Findl, “Intraocular lens calculation accuracy limits in normal eyes,” J. Cataract Refract. Surg. 34(5), 802–808 (2008). [CrossRef] [PubMed]
  18. S. Norrby, “The Dubbelman eye model analysed by ray tracing through aspheric surfaces,” Ophthalmic Physiol. Opt. 25(2), 153–161 (2005). [CrossRef] [PubMed]
  19. S. Norrby, “Sources of error in intraocular lens power calculation,” J. Cataract Refract. Surg. 34(3), 368–376 (2008). [CrossRef] [PubMed]
  20. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Vis. Sci. 42(6), 1396–1403 (2001). [PubMed]
  21. A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye,” Am. J. Ophthalmol. 147(3), 424–431e1 (2009). [CrossRef] [PubMed]
  22. H. J. Shammas, M. C. Shammas, A. Garabet, J. H. Kim, A. Shammas, and L. LaBree, “Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis,” Am. J. Ophthalmol. 136(3), 426–432 (2003). [CrossRef] [PubMed]
  23. J. Aramberri, “Intraocular lens power calculation after corneal refractive surgery: double-K method,” J. Cataract Refract. Surg. 29(11), 2063–2068 (2003). [CrossRef] [PubMed]
  24. P. R. Preussner, J. Wahl, and D. Weitzel, “Topography-based intraocular lens power selection,” J. Cataract Refract. Surg. 31(3), 525–533 (2005). [CrossRef] [PubMed]
  25. A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17(6), 955–965 (2000). [CrossRef] [PubMed]
  26. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15(5), 2204–2218 (2007). [CrossRef] [PubMed]
  27. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, “A validation of the estimation of corneal aberrations from videokeratography: test on keratoconus eyes,” J. Refract. Surg. 18, 267–270 (2002).
  28. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980).
  29. T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol. 70(2), 152–154 (1986). [CrossRef] [PubMed]
  30. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006). [CrossRef] [PubMed]
  31. T. Olsen, “Calculation of intraocular lens power: a review,” Acta Ophthalmol. Scand. 85(5), 472–485 (2007). [CrossRef] [PubMed]
  32. A. van Meeteren, “Calculations of the optical modulation transfer function of the human eye for white light,” Opt. Acta (Lond.) 21, 395–412 (1974).
  33. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vis. 6(1), 1–7 (2006). [CrossRef] [PubMed]
  34. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2(10), 586–589 (2008). [CrossRef]
  35. P. Artal, S. Manzanera, P. Piers, and H. Weeber, “Visual effect of the combined correction of spherical and longitudinal chromatic aberrations,” Opt. Express 18(2), 1637–1648 (2010). [CrossRef] [PubMed]
  36. H. Zhao and M. A. Mainster, “The effect of chromatic dispersion on pseudophakic optical performance,” Br. J. Ophthalmol. 91(9), 1225–1229 (2007). [CrossRef] [PubMed]
  37. I. De Loewenfeld, “Pupillary changes related to age,” in Topics in Neuro-ophthalmology, H. S. Thompson, ed. (Williams & Wilkins, Baltimore, 1979), pp. 124–150.
  38. S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Clinical application of the lens haptic plane concept with transformed axial lengths,” J. Cataract Refract. Surg. 31(7), 1338–1344 (2005). [CrossRef] [PubMed]
  39. S. Norrby, O. Findl, N. Hirnschall, Y. Nishi, and R. Bergman, “Modeling the pseudo-phakic eye for the purpose of sphero-cylindrical IOL power calculation,” presented at ARVO annual meeting, Fort Lauderdale, Fla., May 2–6, 2010.
  40. S. Norrby, E. Lydahl, G. Koranyi, and M. Taube, “Reduction of trend errors in power calculation by linear transformation of measured axial lengths,” J. Cataract Refract. Surg. 29(1), 100–105 (2003). [CrossRef] [PubMed]
  41. A. Guirao, J. Tejedor, and P. Artal, “Corneal aberrations before and after small-incision cataract surgery,” Invest. Ophthalmol. Vis. Sci. 45(12), 4312–4319 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited