OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1687–1702

Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence

S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 6, pp. 1687-1702 (2011)
http://dx.doi.org/10.1364/BOE.2.001687


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a relationship between the intensity collected by a single fiber reflectance device (RSF ) and the fiber diameter (dfib ) and the reduced scattering coefficient ( μ s ) and phase function (p(θ)) of a turbid medium. Monte Carlo simulations are used to identify and model a relationship between RSF and dimensionless scattering ( μ s d fib ). For μ s d fib > 10 we find that RSF is insensitive to p(θ). A solid optical phantom is constructed with μ s 220 mm 1 and is used to convert RSF of any turbid medium to an absolute scale. This calibrated technique provides accurate estimates of μ s over a wide range ([0.05 – 8] mm−1) for a range of dfib ([0.2 – 1] mm).

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.7050) Scattering : Turbid media
(300.6550) Spectroscopy : Spectroscopy, visible
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: March 24, 2011
Revised Manuscript: May 19, 2011
Manuscript Accepted: May 19, 2011
Published: May 25, 2011

Citation
S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, "Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence," Biomed. Opt. Express 2, 1687-1702 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16, 267–269 (1999). [CrossRef]
  2. K. Sokolov, M. Follen, and R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6(5), 651–658 (2002). [CrossRef] [PubMed]
  3. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8(1), 7–16 (2003). [CrossRef] [PubMed]
  4. I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Gastrointest. Endosc. Clin. N. Am. 13(2), 297–308 (2003). [CrossRef] [PubMed]
  5. R. L. P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H. J. C. M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy,” Phys. Med. Biol. 50(11), 2573–2581 (2005). [CrossRef] [PubMed]
  6. M. Canpolat, M. Akyuz, G. A. Gokhan, E. I. Gurer, and R. Tuncer, “Intra-operative brain tumor detection using elastic light single-scattering spectroscopy: a feasibility study,” J. Biomed. Opt. 14(5), 054021 (2009). [CrossRef] [PubMed]
  7. P. B. Garcia-Allende, V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, O. M. Conde, and B. W. Pogue, “Automated identification of tumor microscopic morphology based on macroscopically measured scatter signatures,” J. Biomed. Opt. 14(3), 034034 (2009). [CrossRef] [PubMed]
  8. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009). [CrossRef] [PubMed]
  9. A. Wax and V. Backman, Biomedical Applications of Light Scattering (McGraw-Hill, 2010).
  10. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992). [CrossRef] [PubMed]
  11. A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004). [CrossRef] [PubMed]
  12. A. Amelink, H. J. C. M. Sterenborg, M. P. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  13. C. Lee, W. M. Whelan, and I. A. Vitkin, “Information content of point radiance measurements in turbid media: implications for interstitial optical property quantification,” Appl. Opt. 45(9), 2101–2114 (2009).
  14. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21(7), 546–548 (1996). [CrossRef] [PubMed]
  15. A. Kienle, F. K. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett. 26(20), 1571–1573 (2001). [CrossRef]
  16. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999). [CrossRef]
  17. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16(12), 2935–2945 (1999). [CrossRef]
  18. E. L. Hull and T. H. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A 18(3), 584–599 (2001). [CrossRef]
  19. T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952–958 (2001). [CrossRef]
  20. M. Johns, C. Giller, D. German, and H. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13(13), 4828–4842 (2005). [CrossRef] [PubMed]
  21. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46 (29), 7317–7328 (2007). [CrossRef] [PubMed]
  22. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010). [CrossRef] [PubMed]
  23. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009). [CrossRef] [PubMed]
  24. S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. C. M. Sterenborg, and A. Amelink, “Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes,” J. Biomed. Opt. 15(1), 017004 (2010). [CrossRef] [PubMed]
  25. S. C. Kanick, C. van der Leest, R. S. Djamin, A. M. Janssens, H. C. Hoogsteden, H. J. C. M. Sterenborg, A. Amelink, and J. G. Aerts, “Characterization of mediastinal lymph node physiology in vivo by optical spectroscopy during endoscopic ultrasound-guided fine needle aspiration,” J. Thorac. Oncol. 5(7), 981–987 (2010).
  26. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37(31), 7429–7436 (1998). [CrossRef]
  27. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” J. Opt. Soc. Am. B 7(6), 1077–1012 (2001).
  28. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl. Opt. 42(13), 2436–2442 (2003). [CrossRef] [PubMed]
  29. H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, (1)23–34 (2007). [CrossRef]
  30. M. Canpolat and J. R. Mourant, “Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light,” Appl. Opt. 40(22), 3792–3799 (2001). [CrossRef]
  31. A. Amelink, M. P. Bard, S. A. Burgers, and H. J. C. M. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003). [CrossRef] [PubMed]
  32. T. P. Moffitt and S. A. Prahl, “The specular reflection problem with a single fiber for emission and collection,” SPIE Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV , 5068, (2003).
  33. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt. 42(16), 3187–3197 (2003). [CrossRef] [PubMed]
  34. S. C. Kanick, H. J. C. M. Sterenborg, and A. Amelink, “‘Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009). [CrossRef] [PubMed]
  35. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  36. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  37. G. R. Kepner, “Saturation behavior: a general relationship described by a simple second-order differential equation,” Theor. Biol. Med. Model 7, 11 (2010). [CrossRef] [PubMed]
  38. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11(2), 431–441 (1963). [CrossRef]
  39. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008). [CrossRef] [PubMed]
  40. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010). [CrossRef] [PubMed]
  41. B. K. Horn and R. W. Sjoberg, “Calculating the reflectance map,” Appl. Opt. 18(11), 1770–1779 (1979). [CrossRef] [PubMed]
  42. P. Snabre and A. Arhaliass, “Anisotropic scattering of light in random media: incoherent backscattered spotlight,” Appl. Opt. 37(18), 4017–4026 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited