OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 6 — Jun. 1, 2011
  • pp: 1743–1756

Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 6, pp. 1743-1756 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current OCT devices provide three-dimensional (3D) in-vivo images of the human retina. The resulting very large data sets are difficult to manually assess. Automated segmentation is required to automatically process the data and produce images that are clinically useful and easy to interpret. In this paper, we present a method to segment the retinal layers in these images. Instead of using complex heuristics to define each layer, simple features are defined and machine learning classifiers are trained based on manually labeled examples. When applied to new data, these classifiers produce labels for every pixel. After regularization of the 3D labeled volume to produce a surface, this results in consistent, three-dimensionally segmented layers that match known retinal morphology. Six labels were defined, corresponding to the following layers: Vitreous, retinal nerve fiber layer (RNFL), ganglion cell layer & inner plexiform layer, inner nuclear layer & outer plexiform layer, photoreceptors & retinal pigment epithelium and choroid. For both normal and glaucomatous eyes that were imaged with a Spectralis (Heidelberg Engineering) OCT system, the five resulting interfaces were compared between automatic and manual segmentation. RMS errors for the top and bottom of the retina were between 4 and 6 μm, while the errors for intra-retinal interfaces were between 6 and 15 μm. The resulting total retinal thickness maps corresponded with known retinal morphology. RNFL thickness maps were compared to GDx (Carl Zeiss Meditec) thickness maps. Both maps were mostly consistent but local defects were better visualized in OCT-derived thickness maps.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(100.5010) Image processing : Pattern recognition
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Image Processing

Original Manuscript: March 27, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 20, 2011
Published: May 27, 2011

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, "Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images," Biomed. Opt. Express 2, 1743-1756 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004). [CrossRef] [PubMed]
  2. T. Fabritius, S. Makita, M. Miura, R. Myllyla, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17, 15659–15669 (2009). [CrossRef] [PubMed]
  3. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17, 23719–23728 (2009). [CrossRef]
  4. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18, 14730–14744 (2010). [CrossRef]
  5. M. K. Garvin, M. D. Abramoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28, 1436–1447 (2009). [CrossRef] [PubMed]
  6. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010). [CrossRef] [PubMed]
  7. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13, 9480–9491 (2005). [CrossRef] [PubMed]
  8. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18, 21293–21307 (2010). [CrossRef] [PubMed]
  9. H. Zhu, D. P. Crabb, P. G. Schlottmann, T. Ho, and D. F. Garway-Heath, “FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography,” Opt. Express 18, 24595–24610 (2010). [CrossRef] [PubMed]
  10. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12, 041206 (2007). [CrossRef] [PubMed]
  11. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE CVPR 1, 511–518 (2001).
  12. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer-Verlag, 1995).
  13. V. N. Vapnik, Estimation of Dependences Based on Empirical Data (Springer-Verlag, 1982).
  14. C. Cortes and V. N. Vapnik, “Support-vector networks,” Mach. Learn. 20, 273–297 (1995). [CrossRef]
  15. M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Autom. Rem. Control 25, 821–837 (1964).
  16. Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin, “Training and testing low-degree polynomial data mappings via linear SVM,” J. Mach. Learn. Res. 11, 1471–1490 (2010).
  17. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes - Active Contour Models,” Int. J. Comput. Vision 1, 321–331 (1987). [CrossRef]
  18. S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics (Springer-Verlag, 2003).
  19. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthamol. Vis. Sci. 45, 2606–2612 (2004). [CrossRef]
  20. X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, “Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects,” Invest. Ophthamol. Vis. Sci. 45, 3073–3080 (2004). [CrossRef]
  21. H. Ishikawa, J. Kim, T. R. Friberg, G. Wollstein, L. Kagemann, M. L. Gabriele, K. A. Townsend, K. R. Sung, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Three-dimensional optical coherence tomography (3d-oct) image enhancement with segmentation-free contour modeling c-mode,” Invest. Ophthamol. Vis. Sci. 50, 1344–1349 (2009). [CrossRef]
  22. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13, 444–452 (2005). [CrossRef] [PubMed]
  23. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited