OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1803–1814

Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level

Matti Kinnunen, Antti Kauppila, Artashes Karmenyan, and Risto Myllylä  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1803-1814 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of a double-beam optical tweezers system to stabilize red blood cell (RBC) orientation in the optical tweezers during measurements of elastic light scattering from the trapped cells in an angle range of 5-30 degrees. Another laser (He-Ne) was used to illuminate the cell and elastic light scattering distribution from the single cell was measured with a goniometer and a photomultiplier tube. Moreover, CCD camera images of RBCs with and without laser illumination are presented as complementary information. Light scattering from a RBC was measured in different fixed orientations. Light scattering from cells was also measured when the length of the cell was changed in two different orientations. Light scattering measurements from spherical and crenate RBCs are described and the results are compared with other cell orientations. Analysis shows that the measured elastic light scattering distributions reveal changes in the RBC’s orientation and shape. The effect of stretching on the changes in scattering is larger in the case of face-on incidence of He-Ne laser light than in rim-on incidence. The scattering patterns from RBCs in different orientations as well as from a spherical RBC were compared with numerical results found in literature. Good correlation was found.

© 2011 OSA

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(290.5850) Scattering : Scattering, particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Cell Studies

Original Manuscript: May 2, 2011
Revised Manuscript: May 26, 2011
Manuscript Accepted: May 31, 2011
Published: June 1, 2011

Matti Kinnunen, Antti Kauppila, Artashes Karmenyan, and Risto Myllylä, "Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level," Biomed. Opt. Express 2, 1803-1814 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010). [CrossRef] [PubMed]
  2. K. Bambardekar, J. A. Dharmadhikari, A. K. Dharmadhikari, T. Yamada, T. Kato, H. Kono, Y. Fujimura, S. Sharma, and D. Mathur, “Shape anisotropy induces rotations in optically trapped red blood cells,” J. Biomed. Opt. 15(4), 041504 (2010). [CrossRef] [PubMed]
  3. M. Friebel, J. Helfmann, and M. C. Meinke, “Influence of osmolarity on the optical properties of human erythrocytes,” J. Biomed. Opt. 15(5), 055005 (2010). [CrossRef] [PubMed]
  4. Ö. Ergül, A. Arslan-Ergül, and L. Gürel, “Computational study of scattering from healthy and diseased red blood cells,” J. Biomed. Opt. 15(4), 045004 (2010). [CrossRef] [PubMed]
  5. S. V. Tsinopoulos and D. Polyzos, “Scattering of he-ne laser light by an average-sized red blood cell,” Appl. Opt. 38(25), 5499–5510 (1999). [CrossRef] [PubMed]
  6. D. H. Tycko, M. H. Metz, E. A. Epstein, and A. Grinbaum, “Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration,” Appl. Opt. 24(9), 1355–1365 (1985). [CrossRef] [PubMed]
  7. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998). [CrossRef] [PubMed]
  8. J. He, A. Karlsson, J. Swartling, and S. Andersson-Engels, “Light scattering by multiple red blood cells,” J. Opt. Soc. Am. A 21(10), 1953–1961 (2004). [CrossRef] [PubMed]
  9. A. Karlsson, J. He, J. Swartling, and S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” IEEE Trans. Biomed. Eng. 52(1), 13–18 (2005). [CrossRef] [PubMed]
  10. Y. R. Kim and L. Ornstein, “Isovolumetric sphering of erythrocytes for more accurate and precise cell volume measurement by flow cytometry,” Cytometry 3(6), 419–427 (1983). [CrossRef] [PubMed]
  11. A. N. Shvalov, J. T. Soini, A. V. Chernyshev, P. A. Tarasov, E. Soini, and V. P. Maltsev, “Light-scattering properties of individual erythrocytes,” Appl. Opt. 38(1), 230–235 (1999). [CrossRef] [PubMed]
  12. A. G. Borovoi, E. I. Naats, and U. G. Oppel, “Scattering of light by a red blood cell,” J. Biomed. Opt. 3(3), 364–372 (1998). [CrossRef]
  13. K. A. Sem’yanov, P. A. Tarasov, J. T. Soini, A. K. Petrov, and V. P. Maltsev, “Calibration-free method to determine the size and hemoglobin concentration of individual red blood cells from light scattering,” Appl. Opt. 39(31), 5884–5889 (2000). [CrossRef] [PubMed]
  14. M. A. Yurkin, K. A. Semyanov, P. A. Tarasov, A. V. Chernyshev, A. G. Hoekstra, and V. P. Maltsev, “Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation,” Appl. Opt. 44(25), 5249–5256 (2005). [CrossRef] [PubMed]
  15. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008). [CrossRef] [PubMed]
  16. M. Bartholdi, G. C. Salzman, R. D. Hiebert, and M. Kerker, “Differential light scattering photometer for rapid analysis of single particles in flow,” Appl. Opt. 19(10), 1573–1581 (1980). [CrossRef] [PubMed]
  17. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974). [CrossRef] [PubMed]
  18. K. Ramser and D. Hanstorp, “Optical manipulation for single-cell studies,” J Biophotonics 3(4), 187–206 (2010). [CrossRef] [PubMed]
  19. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995). [CrossRef] [PubMed]
  20. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996). [CrossRef] [PubMed]
  21. J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mech. Chem. Biosyst. 1(3), 169–180 (2004). [PubMed]
  22. R. C. Gauthier, M. Ashman, and C. P. Grover, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38(22), 4861–4869 (1999). [CrossRef] [PubMed]
  23. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7(13), 533–539 (2000). [CrossRef] [PubMed]
  24. S. Sato, M. Ishigure, and H. Inaba, “Optical trapping and rotational manipulation of microscopic particles and biological cells using higher order mode Nd: YAG laser beams,” Electron. Lett. 27(20), 1831–1832 (1991). [CrossRef]
  25. G. B. Liao, P. B. Bareil, Y. Sheng, and A. Chiou, “One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells,” Opt. Express 16(3), 1996–2004 (2008). [CrossRef] [PubMed]
  26. A. Kauppila, M. Kinnunen, A. Karmenyan and R. Myllylä are preparing a manuscript to be called “Design and implementation of a system for cell manipulation using various methods in free suspension.”
  27. W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” Proc. SPIE 1427, 279–287 (1991). [CrossRef]
  28. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004). [CrossRef] [PubMed]
  29. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. Grooth, and J. Greve, “Elastic light-scattering measurements of single biological cells in an optical trap,” Appl. Opt. 35(4), 729–734 (1996). [CrossRef] [PubMed]
  30. M. Collins, A. Kauppila, A. Karmenyan, L. Gajewski, K. Szewczyk, M. Kinnunen, and R. Myllylä, “Measurement of light scattering from trapped particles,” Proc. SPIE 7376, 737619, 737619-8 (2010). [CrossRef]
  31. K. Ramser, K. Logg, M. Goksör, J. Enger, M. Käll, and D. Hanstorp, “Resonance Raman spectroscopy of optically trapped functional erythrocytes,” J. Biomed. Opt. 9(3), 593–600 (2004). [CrossRef] [PubMed]
  32. L. Peng, D. Chen, P. Setlow, and Y. Q. Li, “Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics,” Anal. Chem. 81(10), 4035–4042 (2009). [CrossRef] [PubMed]
  33. Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009). [CrossRef] [PubMed]
  34. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4(1), 36–46 (1999). [CrossRef]
  35. P. Mazeron, S. Muller, and H. el Azouzi, “Deformation of erythrocytes under shear: a small-angle light scattering study,” Biorheology 34(2), 99–110 (1997). [CrossRef] [PubMed]
  36. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003). [CrossRef] [PubMed]
  37. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005). [CrossRef] [PubMed]
  38. P. Laven, “MiePlot: a computer program for scattering of light from a sphere using Mie theory & the Debye series,” http://www.philiplaven.com/mieplot.htm
  39. G. J. Streekstra, A. G. Hoekstra, E.-J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32(13), 2266–2272 (1993). [CrossRef] [PubMed]
  40. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997). [CrossRef] [PubMed]
  41. V. V. Tuchin, “Optical immersion as a new tool for controlling the optical properties of tissues and blood,” Laser Phys. 15, 1109–1136 (2005).
  42. A. A. Bednov, E. V. Savateeva, and A. A. Oraevsky, “Glucose monitoring in whole blood by measuring laser-induced acoustic profiles,” Proc. SPIE 4960, 21–29 (2003). [CrossRef]
  43. S. Rao, S. Bálint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96(1), 209–216 (2009). [CrossRef] [PubMed]
  44. A. W. Jay and P. B. Canham, “Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette,” Biophys. J. 17(2), 169–178 (1977). [CrossRef] [PubMed]
  45. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependent absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 028102 (2004). [CrossRef] [PubMed]
  46. A. N. Bashkatov, D. M. Zhestkov, É. A. Genina, and V. V. Tuchin, “Immersion clearing of human blood in the visible and near infrared spectral regions,” Opt. Spectrosc. 98(4), 638–646 (2005). [CrossRef]
  47. B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10(1), 014005 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited