OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1836–1851

Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue

Maria-Rosaria Antonelli, Angelo Pierangelo, Tatiana Novikova, Pierre Validire, Abdelali Benali, Brice Gayet, and Antonello De Martino  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 7, pp. 1836-1851 (2011)
http://dx.doi.org/10.1364/BOE.2.001836


View Full Text Article

Enhanced HTML    Acrobat PDF (1818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarimetric imaging is emerging as a viable technique for tumor detection and staging. As a preliminary step towards a thorough understanding of the observed contrasts, we present a set of numerical Monte Carlo simulations of the polarimetric response of multilayer structures representing colon samples in the backscattering geometry. In a first instance, a typical colon sample was modeled as one or two scattering “slabs” with monodisperse non absorbing scatterers representing the most superficial tissue layers (the mucosa and submucosa), above a totally depolarizing Lambertian lumping the contributions of the deeper layers (muscularis and pericolic tissue). The model parameters were the number of layers, their thicknesses and morphology, the sizes and concentrations of the scatterers, the optical index contrast between the scatterers and the surrounding medium, and the Lambertian albedo. With quite similar results for single and double layer structures, this model does not reproduce the experimentally observed stability of the relative magnitudes of the depolarizing powers for incident linear and circular polarizations. This issue was solved by considering bimodal populations including large and small scatterers in a single layer above the Lambertian, a result which shows the importance of taking into account the various types of scatterers (nuclei, collagen fibers and organelles) in the same model.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.5430) Physical optics : Polarization
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: April 15, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: May 31, 2011
Published: June 3, 2011

Citation
Maria-Rosaria Antonelli, Angelo Pierangelo, Tatiana Novikova, Pierre Validire, Abdelali Benali, Brice Gayet, and Antonello De Martino, "Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue," Biomed. Opt. Express 2, 1836-1851 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-7-1836


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. A. Vitkin, R. D. Laszlo, and C. L. Whyman, “Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light,” Opt. Express 10(4), 222–229 (2002). [PubMed]
  2. X. Guo, M. F. G. Wood, and I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11(4), 041105 (2006). [CrossRef] [PubMed]
  3. M. F. G. Wood, X. Guo, and I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12(1), 014029 (2007). [CrossRef] [PubMed]
  4. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008). [CrossRef] [PubMed]
  5. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Polarimetry in turbid, birefringent, optically active media: a Monte Carlo study of Mueller matrix decomposition in the backscattering geometry,” J. Appl. Phys. 105(10), 102023 (2009). [CrossRef]
  6. M. F. G. Wood, N. Ghosh, E. H. Moriyama, B. C. Wilson, and I. A. Vitkin, “Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo,” J. Biomed. Opt. 14(1), 014029 (2009). [CrossRef] [PubMed]
  7. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, Berlin, 2006).
  8. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed., SPIE Press Monograph Vol. PM166 (SPIE, Bellingham, WA, 2007).
  9. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40(3), 400–412 (2001). [CrossRef] [PubMed]
  10. I. L. Maksimova, S. V. Romanov, and V. F. Izotova, “The effect of multiple scattering in disperse media on polarization characteristics of scattered light,” Opt. Spectrosc. 92(6), 915–923 (2002). [CrossRef]
  11. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I, 68420I-7 (2008). [CrossRef]
  12. M. Anastasiadou, S. Ben Hatit, R. Ossikovski, S. Guyot, and A. De Martino, “Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices,” J. European Opt. Soc. Rapid Publications 2, 07018 (2007). [CrossRef]
  13. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36(1), 125–135 (1997). [CrossRef] [PubMed]
  14. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010). [CrossRef] [PubMed]
  15. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matricesof highly scattering media,” Opt. Express 1(13), 441–453 (1997). [CrossRef] [PubMed]
  16. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000). [CrossRef]
  17. M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  18. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  19. A. Pierangelo, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011). [CrossRef] [PubMed]
  20. A. Pierangelo, S. Manhas, A. Benali, M. R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, and P. Validire, “Use of Mueller imaging for the staging of human colon cancer,” Proc. SPIE 7895, 78950E (2011). [CrossRef]
  21. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002). [CrossRef] [PubMed]
  22. A. Pierangelo, A. De Martino, M. Anastasiadou, P. Validire, B. Huynh, H. Cohen, and L. Schwartz, “Multispectral Mueller imaging of ex-vivo tissue,” in Proceedings of the European 1st NanoCharM Workshop on Polarization-Based Optical Techniques Applied to Biology and Medicine (nanocharm.org, 2009), pp. 32–38, http://www.nanocharm.org/images/stories/Library/Proceedings/1st%20Workshop/1stWorkshopProceedings.pdf .
  23. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998). [CrossRef]
  24. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  25. K. Badizadegan, V. Backman, C. W. Boone, C. P. Crum, R. R. Dasari, I. Georgakoudi, K. Keefe, K. Munger, S. M. Shapshay, E. E. Sheets, and M. S. Feld, “Spectroscopic diagnosis and imaging of invisible pre-cancer,” Faraday Discuss. 126, 265–279, discussion 303–311 (2004). [CrossRef] [PubMed]
  26. D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005). [CrossRef] [PubMed]
  27. B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001). [CrossRef] [PubMed]
  28. J.-M. André, M. Catala, J.-J. Morère, E. Escudier, G. Katsanis, and J. Poirier, “Histologie: les tissus,” (Faculté de Médicine, Université Pierre et Marie Curie, PAES) (2007–2008), http://www.chups.jussieu.fr/polys/histo/histoP1/histoP1.pdf/ .
  29. S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996). [CrossRef] [PubMed]
  30. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  31. G. I. Zonios, R. M. Cothren, J. T. Arendt, J. Wu, J. Van Dam, J. M. Crawford, R. Manoharan, and M. S. Feld, “Morphological model of human colon tissue fluorescence,” IEEE Trans. Biomed. Eng. 43(2), 113–122 (1996). [CrossRef] [PubMed]
  32. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Lasers Surg. Med. 28(3), 237–243 (2001). [CrossRef] [PubMed]
  33. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005). [CrossRef] [PubMed]
  34. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13(25), 10392–10405 (2005). [CrossRef] [PubMed]
  35. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32(4), 426–434 (1993). [CrossRef] [PubMed]
  36. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996). [CrossRef] [PubMed]
  37. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, “Monte carlo procedure for investigating light propagation and imaging of highly scattering media,” Appl. Opt. 37(31), 7392–7400 (1998). [CrossRef] [PubMed]
  38. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Estimation of wavelength dependence of refractive index of collagen fibers of scleral tissue,” Proc. SPIE 4162, 265–268 (2000). [CrossRef]
  39. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003). [CrossRef]
  40. “Research in Biomedical Optics,” MIT spectroscopy, http://web.mit.edu/spectroscopy/research/biomedicaloptics.html .
  41. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  42. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27(4), 246–248 (2002). [CrossRef] [PubMed]
  43. L. O. Svaasand, E. J. Fiskerstrand, G. Kopstad, L. T. Norvang, E. K. Svaasand, J. S. Nelson, and M. W. Berns, “Therapeutic response during pulsed laser treatment of port-wine stains: dependence on vessel diameter and depth in dermis,” Lasers Med. Sci. 10(4), 235–243 (1995). [CrossRef]
  44. S. Prahl, “Optical Absorption of Hemoglobin” (Oregon Medical Laser Center, Portland, OR) (1999) http://omlc.ogi.edu/spectra/hemoglobin/ .
  45. H. Du, R.-C. A. Fuh, J. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68(2), 141–142 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited