OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1852–1860

Flicker-induced changes in retinal blood flow assessed by Doppler optical coherence tomography

Yimin Wang, Amani A. Fawzi, Ou Tan, Xinbo Zhang, and David Huang  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1852-1860 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We used Doppler Fourier-domain optical coherence tomography (OCT) to investigate flicker-induced changes of total retinal blood flow. Total retinal blood flow was measured by summing flows in veins imaged in double-circular scans around the optic disc. In 3 healthy volunteers, total retinal blood flow was measured before and 10-15 seconds after 30 seconds of flicker stimulation. The average blood flow increased 22.2% (p = 0.002). The total venous and arterial vessel cross-sectional area increased 11.3% (p < 0.001) and +2.7% (p = 0.28) respectively. The average venous and arterial flow velocity were calculated indirectly by dividing total retinal blood flow by total venous and arterial cross-sectional areas. They also increased by 8.8% (p = 0.046) and 18.3% (p = 0.004), respectively. These results show that human retinal blood flow increases after visible flicker stimulation, and this could be measured with OCT.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Ophthalmology Applications

Original Manuscript: March 8, 2011
Revised Manuscript: May 25, 2011
Manuscript Accepted: June 3, 2011
Published: June 6, 2011

Virtual Issues
In vivo Microcirculation Imaging (2011) Biomedical Optics Express

Yimin Wang, Amani A. Fawzi, Ou Tan, Xinbo Zhang, and David Huang, "Flicker-induced changes in retinal blood flow assessed by Doppler optical coherence tomography," Biomed. Opt. Express 2, 1852-1860 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Villringer and U. Dirnagl, “Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging,” Cerebrovasc. Brain Metab. Rev. 7(3), 240–276 (1995). [PubMed]
  2. H. Ito, K. Takahashi, J. Hatazawa, S. G. Kim, and I. Kanno, “Changes in human regional cerebral blood flow and cerebral blood volume during visual stimulation measured by positron emission tomography,” J. Cereb. Blood Flow Metab. 21(5), 608–612 (2001). [CrossRef] [PubMed]
  3. C. E. Riva, S. Harino, R. D. Shonat, and B. L. Petrig, “Flicker evoked increase in optic nerve head blood flow in anesthetized cats,” Neurosci. Lett. 128(2), 291–296 (1991). [CrossRef] [PubMed]
  4. D. G. Buerk, B. M. Ances, J. H. Greenberg, and J. A. Detre, “Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats,” Neuroimage 18(1), 1–9 (2003). [CrossRef] [PubMed]
  5. C. E. Riva, T. Salgarello, E. Logean, A. Colotto, E. M. Galan, and B. Falsini, “Flicker-evoked response measured at the optic disc rim is reduced in ocular hypertension and early glaucoma,” Invest. Ophthalmol. Vis. Sci. 45(10), 3662–3668 (2004). [CrossRef] [PubMed]
  6. W. Goebel, W. E. Lieb, A. Ho, R. C. Sergott, R. Farhoumand, and F. Grehn, “Color Doppler imaging: a new technique to assess orbital blood flow in patients with diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 36(5), 864–870 (1995). [PubMed]
  7. M. T. Nicolela, P. Hnik, M. Schulzer, and S. M. Drance, “Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry,” J. Glaucoma 6(3), 157–164 (1997). [CrossRef] [PubMed]
  8. J. P. S. Garcia, P. T. Garcia, and R. B. Rosen, “Retinal blood flow in the normal human eye using the canon laser blood flowmeter,” Ophthalmic Res. 34(5), 295–299 (2002). [CrossRef] [PubMed]
  9. G. T. Feke, H. Tagawa, D. M. Deupree, D. G. Goger, J. Sebag, and J. J. Weiter, “Blood flow in the normal human retina,” Invest. Ophthalmol. Vis. Sci. 30(1), 58–65 (1989). [PubMed]
  10. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, “Blood velocity and volumetric flow rate in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985). [PubMed]
  11. C. E. Riva, S. Harino, R. D. Shonat, and B. L. Petrig, “Flicker evoked increase in optic nerve head blood flow in anesthetized cats,” Neurosci. Lett. 128(2), 291–296 (1991). [CrossRef] [PubMed]
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  13. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113(3), 325–332 (1995). [PubMed]
  14. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996). [PubMed]
  15. A. E. Fung, G. A. Lalwani, P. J. Rosenfeld, S. R. Dubovy, S. Michels, W. J. Feuer, C. A. Puliafito, J. L. Davis, H. W. Flynn, and M. Esquiabro, “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” Am. J. Ophthalmol. 143(4), 566–583.e2 (2007). [CrossRef] [PubMed]
  16. M. Bolz, K. Kriechbaum, C. Simader, G. Deak, J. Lammer, C. Treu, C. Scholda, C. Prünte, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “In vivo retinal morphology after grid laser treatment in diabetic macular edema,” Ophthalmology 117(3), 538–544 (2010). [CrossRef] [PubMed]
  17. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Arch. Ophthalmol. 121(2), 235–239 (2003). [PubMed]
  18. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995). [CrossRef] [PubMed]
  19. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  20. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  21. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  22. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  23. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  24. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29(2), 171–173 (2004). [CrossRef] [PubMed]
  25. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008). [CrossRef] [PubMed]
  26. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol. 93(5), 634–637 (2009). [CrossRef] [PubMed]
  27. Y. Wang, A. A. Fawzi, R. Varma, A. A. Sadun, X. Zhang, O. Tan, J. A. Izatt, and D. Huang, “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Invest. Ophthalmol. Vis. Sci. 52(2), 840–845 (2011). [CrossRef] [PubMed]
  28. American National Standard for Safe Use of Lasers, Laser Institute of America, American National Standards Institute, Inc. 2000.
  29. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4(1), 267–280 (1987). [CrossRef]
  30. G. Michelson, A. Patzelt, and J. Harazny, “Flickering light increases retinal blood flow,” Retina 22(3), 336–343 (2002). [CrossRef] [PubMed]
  31. A. J. Scheiner, C. E. Riva, K. Kazahaya, and B. L. Petrig, “Effect of flicker on macular blood flow assessed by the blue field simulation technique,” Invest. Ophthalmol. Vis. Sci. 35(9), 3436–3441 (1994). [PubMed]
  32. G. Garhöfer, C. Zawinka, H. Resch, K. H. Huemer, G. T. Dorner, and L. Schmetterer, “Diffuse luminance flicker increases blood flow in major retinal arteries and veins,” Vision Res. 44(8), 833–838 (2004). [CrossRef] [PubMed]
  33. J. Kiryu, S. Asrani, M. Shahidi, M. Mori, and R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Vis. Sci. 36(7), 1240–1246 (1995). [PubMed]
  34. K. Polak, L. Schmetterer, and C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Vis. Sci. 43(8), 2721–2726 (2002). [PubMed]
  35. F. Formaz, C. E. Riva, and M. Geiser, “Diffuse luminance flicker increases retinal vessel diameter in humans,” Curr. Eye Res. 16(12), 1252–1257 (1997). [CrossRef] [PubMed]
  36. A. Bill and G. O. Sperber, “Control of retinal and choroidal blood flow,” Eye (Lond.) 4(Pt 2), 319–325 (1990). [PubMed]
  37. L. Wang and A. Bill, “Effects of constant and flickering light on retinal metabolism in rabbits,” Acta Ophthalmol. Scand. 75(3), 227–231 (1997). [CrossRef] [PubMed]
  38. C. E. Riva, E. Logean, and B. Falsini, “Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina,” Prog. Retin. Eye Res. 24(2), 183–215 (2005). [CrossRef] [PubMed]
  39. G. Donati, C. J. Pournaras, J. L. Munoz, S. Poitry, C. L. Poitry-Yamate, and M. Tsacopoulos, “Nitric oxide controls arteriolar tone in the retina of the miniature pig,” Invest. Ophthalmol. Vis. Sci. 36(11), 2228–2237 (1995). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited