OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1864–1876

Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

Alfredo Dubra, Yusufu Sulai, Jennifer L. Norris, Robert F. Cooper, Adam M. Dubis, David R. Williams, and Joseph Carroll  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1864-1876 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1637 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools


Video Abstract

Images of Rod Photoreceptors Inside the Living Human Eye


The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders.

© 2011 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: April 1, 2011
Revised Manuscript: May 2, 2011
Manuscript Accepted: June 3, 2011
Published: June 8, 2011

Virtual Issues
Cellular Imaging of the Retina (2011) Biomedical Optics Express

Alfredo Dubra, Yusufu Sulai, Jennifer L. Norris, Robert F. Cooper, Adam M. Dubis, David R. Williams, and Joseph Carroll, "Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope," Biomed. Opt. Express 2, 1864-1876 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  2. E. L. Berson, “Retinitis pigmentosa. The Friedenwald Lecture,” Invest. Ophthalmol. Vis. Sci. 34(5), 1659–1676 (1993). [PubMed]
  3. K. R. Alexander and G. A. Fishman, “Prolonged rod dark adaptation in retinitis pigmentosa,” Br. J. Ophthalmol. 68(8), 561–569 (1984). [CrossRef] [PubMed]
  4. C. P. Hamel, “Cone rod dystrophies,” Orphanet J. Rare Dis. 2(1), 7 (2007). [CrossRef] [PubMed]
  5. M. Michaelides, A. J. Hardcastle, D. M. Hunt, and A. T. Moore, “Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis,” Surv. Ophthalmol. 51(3), 232–258 (2006). [CrossRef] [PubMed]
  6. Y. Miyake, K. Yagasaki, M. Horiguchi, Y. Kawase, and T. Kanda, “Congenital stationary night blindness with negative electroretinogram. A new classification,” Arch. Ophthalmol. 104(7), 1013–1020 (1986). [PubMed]
  7. C. A. Curcio, C. Owsley, and G. R. Jackson, “Spare the rods, save the cones in aging and age-related maculopathy,” Invest. Ophthalmol. Vis. Sci. 41(8), 2015–2018 (2000). [PubMed]
  8. C. A. Curcio, N. E. Medeiros, and C. L. Millican, “Photoreceptor loss in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 37(7), 1236–1249 (1996). [PubMed]
  9. R. Adler, C. Curcio, D. Hicks, D. Price, and F. Wong, “Cell death in age-related macular degeneration,” Mol. Vis. 5, 31 (1999). [PubMed]
  10. K. R. Kendell, H. A. Quigley, L. A. Kerrigan, M. E. Pease, and E. N. Quigley, “Primary open-angle glaucoma is not associated with photoreceptor loss,” Invest. Ophthalmol. Vis. Sci. 36(1), 200–205 (1995). [PubMed]
  11. T. M. Nork, J. N. Ver Hoeve, G. L. Poulsen, R. W. Nickells, M. D. Davis, A. J. Weber, S. H. Vaegan, S. H. Sarks, H. L. Lemley, and L. L. Millecchia, “Swelling and loss of photoreceptors in chronic human and experimental glaucomas,” Arch. Ophthalmol. 118(2), 235–245 (2000). [PubMed]
  12. H. Gao and J. G. Hollyfield, “Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells,” Invest. Ophthalmol. Vis. Sci. 33(1), 1–17 (1992). [PubMed]
  13. C. A. Curcio, C. L. Millican, K. A. Allen, and R. E. Kalina, “Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina,” Invest. Ophthalmol. Vis. Sci. 34(12), 3278–3296 (1993). [PubMed]
  14. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  15. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  16. A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vision Res. 41(10-11), 1291–1306 (2001). [CrossRef] [PubMed]
  17. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 4 (2002). [CrossRef] [PubMed]
  18. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101(22), 8461–8466 (2004). [CrossRef] [PubMed]
  19. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113(6), 1014–1019.e1 (2006). [CrossRef] [PubMed]
  20. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, “In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function,” Invest. Ophthalmol. Vis. Sci. 47(5), 2080–2092 (2006). [CrossRef] [PubMed]
  21. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. H. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 48(7), 3283–3291 (2007). [CrossRef] [PubMed]
  22. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007). [CrossRef] [PubMed]
  23. R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24(5), 1438–1447 (2007). [CrossRef] [PubMed]
  24. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008). [CrossRef] [PubMed]
  25. T. Y. Chui, H. Song, and S. A. Burns, “Adaptive-optics imaging of human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25(12), 3021–3029 (2008). [CrossRef] [PubMed]
  26. M. K. Yoon, A. Roorda, Y. Zhang, C. Nakanishi, L. J. Wong, Q. Zhang, L. Gillum, A. Green, and J. L. Duncan, “Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation,” Invest. Ophthalmol. Vis. Sci. 50(4), 1838–1847 (2009). [CrossRef] [PubMed]
  27. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009). [CrossRef] [PubMed]
  28. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008). [CrossRef] [PubMed]
  29. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011). [CrossRef] [PubMed]
  30. J. T. McAllister, A. M. Dubis, D. M. Tait, S. Ostler, J. Rha, K. E. Stepien, C. G. Summers, and J. Carroll, “Arrested development: high-resolution imaging of foveal morphology in albinism,” Vision Res. 50(8), 810–817 (2010). [CrossRef] [PubMed]
  31. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010). [CrossRef] [PubMed]
  32. J. Carroll, E. Banin, D. M. Hunt, R. Martin, M. Michaelides, L. Mizrahi-Meissonnier, A. T. Moore, D. Sharon, D. R. Williams, and A. Dubra, “Evaluating the photoreceptor mosaic in blue cone monochromacy (BCM),” Invest. Ophthalmol. Vis. Sci. 51, E-Abstract 2935 (2010).
  33. J. Carroll, S. S. Choi, and D. R. Williams, “In vivo imaging of the photoreceptor mosaic of a rod monochromat,” Vision Res. 48(26), 2564–2568 (2008). [CrossRef] [PubMed]
  34. N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, and D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011). [CrossRef] [PubMed]
  35. M. Alpern, C. C. Ching, and K. Kitahara, “The directional sensitivity of retinal rods,” J. Physiol. 343, 577–592 (1983). [PubMed]
  36. J. A. Van Loo and J. M. Enoch, “The scotopic Stiles-Crawford effect,” Vision Res. 15(8-9), 1005–1009 (1975). [CrossRef] [PubMed]
  37. A. Dubra and Y. Sulai, “The reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011). [CrossRef]
  38. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, Vol. 6204 of Lecture Notes in Computer Science (Springer, Berlin), pp. 60–71 (2010).
  39. ANSI, “American National Standard for safe use of lasers (ANSI 136.1),” ANSI 136.1–2007 (The Laser Institute of America, 2007).
  40. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007). [CrossRef] [PubMed]
  41. C. W. Oyster, The Human Eye: Structure and Function (Sinauer Associates Inc, Sunderland, Massachusetts, 1999).
  42. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  43. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007). [CrossRef] [PubMed]
  44. J. Carroll, R. C. Baraas, M. Wagner-Schuman, J. Rha, C. A. Siebe, C. Sloan, D. M. Tait, S. Thompson, J. I. W. Morgan, J. Neitz, D. R. Williams, D. H. Foster, and M. Neitz, “Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin,” Proc. Natl. Acad. Sci. U.S.A. 106(49), 20948–20953 (2009). [CrossRef] [PubMed]
  45. O. S. Packer, D. R. Williams, and D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16(7), 2251–2260 (1996). [PubMed]
  46. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  47. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci. 9(02), 169–180 (1992). [CrossRef] [PubMed]
  48. D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Vis. Neurosci. 5(06), 511–523 (1990). [CrossRef] [PubMed]
  49. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28(3), 433–454 (1988). [CrossRef] [PubMed]
  50. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987). [CrossRef] [PubMed]
  51. J. Carroll, E. A. Rossi, J. Porter, J. Neitz, A. Roorda, D. R. Williams, and M. Neitz, “Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic,” Vision Res. 50(19), 1989–1999 (2010). [CrossRef] [PubMed]
  52. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688A, 145–151 (2005). [CrossRef]
  53. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007). [CrossRef] [PubMed]
  54. J. Porter, College of Optometry, University of Houston, 4901 Calhoun Rd, Houston, TX 77204–2020 (personal communication, 2010).
  55. D. Merino, University of California San Francisco Medical Center, 400 Parnassus Ave, San Francisco, CA 94143–0344 (personal communication, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited