OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1877–1892

Optofluidic phantom mimicking optical properties of porcine livers

Ruiqi Long, Travis King, Tony Akl, M. Nance Ericson, Mark Wilson, Gerard L. Coté, and Michael J. McShane  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1877-1892 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1635 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One strategy for assessing efficacy of a liver transplant is to monitor perfusion and oxygenation after transplantation. An implantable optical sensor is being developed to overcome inadequacies of current monitoring approaches. To facilitate sensor design while minimizing animal use, a polydimethylsiloxane (PDMS)-based liver phantom was developed to mimic the optical properties of porcine liver in the 630-1000 nm wavelength range and the anatomical geometry of liver parenchyma. Using soft lithography to construct microfluidic channels in pigmented elastomer enabled the 2D approximation of hexagonal liver lobules with 15mm sinusoidal channels, which will allow perfusion with blood-mimicking fluids to facilitate the development of the liver perfusion and oxygenation monitoring system.

© 2011 OSA

OCIS Codes
(110.7050) Imaging systems : Turbid media
(160.4760) Materials : Optical properties
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: February 10, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 4, 2011
Published: June 9, 2011

Ruiqi Long, Travis King, Tony Akl, M. Nance Ericson, Mark Wilson, Gerard L. Coté, and Michael J. McShane, "Optofluidic phantom mimicking optical properties of porcine livers," Biomed. Opt. Express 2, 1877-1892 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Thuluvath, M. K. Guidinger, J. J. Fung, L. B. Johnson, S. C. Rayhill, and S. J. Pelletier, “Liver transplantation in the United States, 1999-2008,” Am. J. Transplant. 10(4p2), 1003–1019 (2010). [CrossRef] [PubMed]
  2. U. Settmacher, B. Stange, R. Haase, M. Heise, T. Steinmüller, W. O. Bechstein, and P. Neuhaus, “Arterial complications after liver transplantation,” Transpl. Int. 13(5), 372–378 (2000). [CrossRef] [PubMed]
  3. B. J. Stange, M. Glanemann, N. C. Nuessler, U. Settmacher, T. Steinmüller, and P. Neuhaus, “Hepatic artery thrombosis after adult liver transplantation,” Liver Transpl. 9(6), 612–620 (2003). [CrossRef] [PubMed]
  4. S. Pungpapong, C. Manzarbeitia, J. Ortiz, D. J. Reich, V. Araya, K. D. Rothstein, and S. J. Muñoz, “Cigarette smoking is associated with an increased incidence of vascular complications after liver transplantation,” Liver Transpl. 8(7), 582–587 (2002). [CrossRef] [PubMed]
  5. M. N. Ericson, M. A. Wilson, G. L. Cote, J. S. Baba, W. Xu, M. Bobrek, C. L. Britton, M. S. Hileman, M. R. Moore, M. S. Emery, and R. Lenarcluzzil, “Implantable sensor for blood flow monitoring after transplant surgery,” Minimally Invasive Therapy & Allied Technol. 13, 87–94 (2004).
  6. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997). [CrossRef]
  7. Y. Shang, Y. Q. Zhao, R. Cheng, L. X. Dong, D. Irwin, and G. Q. Yu, “Portable optical tissue flow oximeter based on diffuse correlation spectroscopy,” Opt. Lett. 34(22), 3556–3558 (2009). [CrossRef] [PubMed]
  8. G. Q. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem. Photobiol. 82(5), 1279–1284 (2006). [CrossRef] [PubMed]
  9. M. N. Ericson, M. Wilson, G. Cote, C. L. Britton, W. Xu, J. Baba, M. Bobrek, M. Hileman, M. Moore, and S. Frank, “Development of an implantable oximetry-based organ perfusion sensor,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 3, 2235–2238 (2004). [PubMed]
  10. T. J. King, T. J. Akl, R. Long, M. J. McShane, M. N. Ericson, M. Wilson, and G. L. Cote, “A phantom that mimics optical and flow properties of liver for developing a perfusion sensor,” presented at Biomedical Engineering Society Annual Meeting, Austin, TX (Oct. 6–9, 2010).
  11. S. J. Lee, B. L. Ibey, W. Xu, M. A. Wilson, M. N. Ericson, and G. L. Coté, “Processing of pulse oximeter data using discrete wavelet analysis,” IEEE Trans. Biomed. Eng. 52(7), 1350–1352 (2005). [CrossRef] [PubMed]
  12. H. Subramanian, B. L. Ibey, W. J. Xu, M. A. Wilson, M. N. Ericson, and G. L. Coté, “Real-time separation of perfusion and oxygenation signals for an implantable sensor using adaptive filtering,” IEEE Trans. Biomed. Eng. 52(12), 2016–2023 (2005). [CrossRef] [PubMed]
  13. H. Subramanian, B. L. Ibey, W. J. Xu, M. A. Wilson, M. N. Ericson, and G. L. Coté, “An autocorrelation-based time domain analysis technique for monitoring perfusion and oxygenation in transplanted organs,” IEEE Trans. Biomed. Eng. 52(7), 1355–1358 (2005). [CrossRef] [PubMed]
  14. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  15. S. Casciaro, F. Conversano, S. Musio, E. Casciaro, C. Demitri, and A. Sannino, “Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels,” J. Mater. Sci. Mater. Med. 20(4), 983–989 (2009). [CrossRef] [PubMed]
  16. S. Cournane, L. Cannon, J. E. Browne, and A. J. Fagan, “Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties,” Phys. Med. Biol. 55(19), 5965–5983 (2010). [CrossRef] [PubMed]
  17. E. J. Harris, N. R. Miller, J. C. Bamber, J. R. N. Symonds-Tayler, and P. M. Evans, “Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound,” Phys. Med. Biol. 55(12), 3363–3380 (2010). [CrossRef] [PubMed]
  18. K. S. Kim, J. M. Lee, S. H. Kim, K. W. Kim, S. J. Kim, S. H. Cho, J. K. Han, and B. I. Choi, “Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies,” Invest. Radiol. 45(3), 149–157 (2010). [CrossRef] [PubMed]
  19. L. Kopka, H. D. He, W. D. Foley, H. Hu, D. R. Jacobson, and E. H. Grabbe, “Low-contrast detectability of a new multislice versus a monoslice helical CT in a liver phantom,” Radiology 209(P), 284 (1998). [PubMed]
  20. A. C. T. Martinsen, H. K. Saether, D. R. Olsen, P. Skaane, and H. M. Olerud, “Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study,” Acta Radiol. 49(3), 303–309 (2008). [CrossRef] [PubMed]
  21. H. M. Olerud, J. B. Olsen, and A. Skretting, “An anthropomorphic phantom for receiver operating characteristic studies in CT imaging of liver lesions,” Br. J. Radiol. 72(853), 35–43 (1999). [PubMed]
  22. P. Prakash, M. C. Converse, D. M. Mahvi, and J. G. Webster, “Measurement of the specific heat capacity of liver phantom,” Physiol. Meas. 27(10), N41–N46 (2006). [CrossRef] [PubMed]
  23. S. T. Schindera, R. C. Nelson, S. Mukundan, E. K. Paulson, T. A. Jaffe, C. M. Miller, D. M. DeLong, K. Kawaji, T. T. Yoshizumi, and E. Samei, “Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection--phantom study,” Radiology 246(1), 125–132 (2008). [CrossRef] [PubMed]
  24. H. Z. Wang, L. F. Xu, J. Yu, Q. M. Huang, X. Y. Wang, L. Lu, H. Wang, Y. Huang, H. Y. Cheng, X. L. Zhang, and G. Y. Li, “Phantom study of the classification of liver fibrosis based on nuclear magnetic resonance elasto-graphy,” Acta Phys Sinica Ch. Ed. 59, 7463–7471 (2010).
  25. D. Passos, J. C. Hebden, P. N. Pinto, and R. Guerra, “Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution,” J. Biomed. Opt. 10(6), 064036 (2005). [CrossRef] [PubMed]
  26. P. Sun and Y. Wang, “Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm,” Opt. Laser Technol. 42(1), 1–7 (2010). [CrossRef]
  27. “Liver,” http://en.wikipedia.org/wiki/Liver .
  28. “Lobules of liver,” http://en.wikipedia.org/wiki/Liver_lobule .
  29. “Polydimethylsiloxane,” http://en.wikipedia.org/wiki/Polydimethylsiloxane .
  30. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28(12), 2297–2303 (1989). [CrossRef] [PubMed]
  31. S. L. Jacques, “Skin Optics” (1998), http://omlc.ogi.edu/news/jan98/skinoptics.html .
  32. S. A. Prahl, “Inverse Adding-Doubling,” http://omlc.ogi.edu/software/iad/ .
  33. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993). [CrossRef] [PubMed]
  34. T. J. Akl, R. Long, M. J. McShane, M. N. Ericson, M. A. Wilson, and G. L. Cote, “Optimizing probe design for an implantable perfusion and oxygenation sensor,” submitted to Biomed. Opt. Express .
  35. A. C. Guyton, “The liver as an organ,” in Textbook of Medical Physiology, 8th ed. (W. B. Saunders, Philadelphia, 1991), p. 771.
  36. B. C. Wilson and M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31(4), 327–360 (1986). [CrossRef] [PubMed]
  37. J. P. Ritz, A. Roggan, C. Isbert, G. Müller, H. J. Buhr, and C. T. Germer, “Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm,” Lasers Surg. Med. 29(3), 205–212 (2001). [CrossRef] [PubMed]
  38. D. Zhu, Q. M. Luo, and J. A. Cen, “Effects of dehydration on the optical properties of in vitro porcine liver,” Lasers Surg. Med. 33(4), 226–231 (2003). [CrossRef] [PubMed]
  39. M. R. Arnfield, R. P. Mathew, J. Tulip, and M. S. McPhee, “Analysis of tissue optical coefficients using an approximate equation valid for comparable absorption and scattering,” Phys. Med. Biol. 37(6), 1219–1230 (1992). [CrossRef] [PubMed]
  40. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990). [CrossRef]
  41. J. F. Beek, H. J. van Staveren, P. Posthumus, H. J. C. M. Sterenborg, and M. J. C. Gemert, “The influence of respiration on the optical properties of piglet lung at 632.8 nm,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds. (SPIE Optical Engineering Press, Bellingham, 1993), Vol. IS11, pp. 193–210.
  42. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28(12), 2325–2330 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited