OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1907–1917

In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse

James McGinty, Daniel W. Stuckey, Vadim Y. Soloviev, Romain Laine, Marzena Wylezinska-Arridge, Dominic J. Wells, Simon R. Arridge, Paul M. W. French, Joseph V. Hajnal, and Alessandro Sardini  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1907-1917 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct.

© 2011 OSA

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Functional Imaging

Original Manuscript: April 18, 2011
Revised Manuscript: June 6, 2011
Manuscript Accepted: June 10, 2011
Published: June 10, 2011

James McGinty, Daniel W. Stuckey, Vadim Y. Soloviev, Romain Laine, Marzena Wylezinska-Arridge, Dominic J. Wells, Simon R. Arridge, Paul M. W. French, Joseph V. Hajnal, and Alessandro Sardini, "In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse," Biomed. Opt. Express 2, 1907-1917 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. S. Vogel, C. Thaler, and S. V. Koushik, “Fanciful FRET,” Sci. STKE 2006(331), re2 (2006). [CrossRef] [PubMed]
  2. E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006). [CrossRef] [PubMed]
  3. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006). [CrossRef] [PubMed]
  4. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, NY, 2006).
  5. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997). [CrossRef] [PubMed]
  6. J. McGinty, V. Y. Soloviev, K. B. Tahir, R. Laine, D. W. Stuckey, J. V. Hajnal, A. Sardini, P. M. French, and S. R. Arridge, “Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging,” Opt. Lett. 34(18), 2772–2774 (2009). [CrossRef] [PubMed]
  7. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009). [CrossRef] [PubMed]
  8. A. L. Rusanov, T. V. Ivashina, L. M. Vinokurov, I. I. Fiks, A. G. Orlova, I. V. Turchin, I. G. Meerovich, V. V. Zherdeva, and A. P. Savitsky, “Lifetime imaging of FRET between red fluorescent proteins,” J Biophotonics 3(12), 774–783 (2010). [CrossRef] [PubMed]
  9. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett. 35(9), 1314–1316 (2010). [CrossRef] [PubMed]
  10. V. Y. Soloviev, J. McGinty, K. B. Tahir, R. Laine, D. W. Stuckey, P. S. Mohan, J. V. Hajnal, A. Sardini, P. M. W. French, and S. R. Arridge, “Tomographic imaging of fluorescence resonance energy transfer in highly light scattering media,” Proc. SPIE 7573, 75730G, 75730G-10 (2010). [CrossRef]
  11. J. M. McMahon, E. Signori, K. E. Wells, V. M. Fazio, and D. J. Wells, “Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase—increased expression with reduced muscle damage,” Gene Ther. 8(16), 1264–1270 (2001). [CrossRef] [PubMed]
  12. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr, “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine,” Proc. Natl. Acad. Sci. U.S.A. 92(16), 7297–7301 (1995). [CrossRef] [PubMed]
  13. H. B. Manning, G. T. Kennedy, D. M. Owen, D. M. Grant, A. I. Magee, M. A. Neil, Y. Itoh, C. Dunsby, and P. M. French, “A compact, multidimensional spectrofluorometer exploiting supercontinuum generation,” J Biophotonics 1(6), 494–505 (2008). [CrossRef] [PubMed]
  14. V. Y. Soloviev, C. D’Andrea, P. S. Mohan, G. Valentini, R. Cubeddu, and S. R. Arridge, “Fluorescence lifetime optical tomography with Discontinuous Galerkin discretisation scheme,” Biomed. Opt. Express 1(3), 998–1013 (2010). [CrossRef] [PubMed]
  15. V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand, Princeton, 1963).
  16. J. Nocedal and S. J. Wright, Numerical Optimization (Springer-Verlag, New York, 1999).
  17. C. I. Maeder, M. A. Hink, A. Kinkhabwala, R. Mayr, P. I. Bastiaens, and M. Knop, “Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling,” Nat. Cell Biol. 9(11), 1319–1326 (2007). [CrossRef] [PubMed]
  18. N. C. Deliolanis, T. Wurdinger, L. Pike, B. A. Tannous, X. O. Breakefield, R. Weissleder, and V. Ntziachristos, “In vivo tomographic imaging of red-shifted fluorescent proteins,” Biomed. Opt. Express 2(4), 887–900 (2011). [CrossRef] [PubMed]
  19. S. B. VanEngelenburg and A. E. Palmer, “Fluorescent biosensors of protein function,” Curr. Opin. Chem. Biol. 12(1), 60–65 (2008). [CrossRef] [PubMed]
  20. B. Ananthanarayanan, Q. Ni, and J. Zhang, “Chapter 2: Molecular sensors based on fluorescence resonance energy transfer to visualize cellular dynamics,” Methods Cell Biol. 89, 37–57 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited