OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1946–1954

SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging

Masahito Yamanaka, Yan-Kai Tzeng, Shogo Kawano, Nicholas I. Smith, Satoshi Kawata, Huan-Cheng Chang, and Katsumasa Fujita  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1946-1954 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the use of fluorescent nanodiamonds (FNDs) as a photostable fluorescent probe for high resolution saturated excitation (SAX) microscopy. We confirmed that FNDs show a nonlinear fluorescence response under saturated excitation conditions generated by intense excitation light. Using FNDs, we quantified the spatial resolution improvement inherent in SAX microscopy, and experimentally demonstrated the scalability of the spatial resolution of SAX microscopy. The photostability of the FNDs allowed us to perform nanoparticle imaging of a multicolor-stained macrophage cell with a spatial resolution beyond the diffraction limit.

© 2011 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Nanotechnology and Plasmonics

Original Manuscript: April 21, 2011
Revised Manuscript: May 27, 2011
Manuscript Accepted: June 10, 2011
Published: June 16, 2011

Masahito Yamanaka, Yan-Kai Tzeng, Shogo Kawano, Nicholas I. Smith, Satoshi Kawata, Huan-Cheng Chang, and Katsumasa Fujita, "SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging," Biomed. Opt. Express 2, 1946-1954 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  2. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  6. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007). [CrossRef] [PubMed]
  7. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  8. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  9. J. Humpolíčková, A. Benda, and J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009). [CrossRef] [PubMed]
  10. O. Schwartz and D. Oron, “Using variable pupil filters to optimize the resolution in multiphoton and saturable fluorescence confocal microscopy,” Opt. Lett. 34(4), 464–466 (2009). [CrossRef] [PubMed]
  11. O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun. 282(18), 3657–3664 (2009). [CrossRef]
  12. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007). [CrossRef] [PubMed]
  13. M. Yamanaka, S. Kawano, K. Fujita, N. I. Smith, and S. Kawata, “Beyond the diffraction-limit biological imaging by saturated excitation microscopy,” J. Biomed. Opt. 13(5), 050507 (2008). [CrossRef] [PubMed]
  14. S. Kawano, N. I. Smith, M. Yamanaka, S. Kawata, and K. Fujita, “Determination of the expanded optical transfer function in saturated excitation imaging and high harmonic demodulation,” Appl. Phys. Express 4(4), 042401 (2011). [CrossRef]
  15. S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc. 127(50), 17604–17605 (2005). [CrossRef] [PubMed]
  16. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  17. X. Kong, L.-C. L. Huang, S.-C. V. Liau, C.-C. Han, and H.-C. Chang, “Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides,” Anal. Chem. 77(13), 4273–4277 (2005). [CrossRef] [PubMed]
  18. G. Davies and M. F. Hamer, “Optical studies of the 1.945 eV vibronic band in diamond,” Proc. R. Soc. Lond. A Math. Phys. Sci. 348(1653), 285–298 (1976). [CrossRef]
  19. F. Jelezko and J. Wrachtrup, “Single defect centers in diamond: A review,” Phys. Status Solidi 203(13), 3207–3225 (2006). [CrossRef]
  20. L. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson, “Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies,” N. J. Phys. 10(10), 103024 (2008). [CrossRef]
  21. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electrons structure and associated dynamics,” Phys. Rev. B 74(10), 104303 (2006). [CrossRef]
  22. E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett. 86(1), 14001 (2009). [CrossRef]
  23. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J. C. Arnault, A. Thorel, J. P. Boudou, P. A. Curmi, and F. Treussart, “Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells,” ACS Nano 3(12), 3955–3962 (2009). [CrossRef] [PubMed]
  24. P.-H. Yang, X. Sun, J.-F. Chiu, H. Sun, and Q.-Y. He, “Transferrin-mediated gold nanoparticle cellular uptake,” Bioconjug. Chem. 16(3), 494–496 (2005). [CrossRef] [PubMed]
  25. A. Verma and F. Stellacci, “Effect of surface properties on nanoparticle-cell interactions,” Small 6(1), 12–21 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited