OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1955–1968

Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

Kristina Irsch, Boris Gramatikov, Yi-Kai Wu, and David Guyton  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1955-1968 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia.

© 2011 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Ophthalmology Applications

Original Manuscript: May 2, 2011
Revised Manuscript: June 15, 2011
Manuscript Accepted: June 15, 2011
Published: June 17, 2011

Kristina Irsch, Boris Gramatikov, Yi-Kai Wu, and David Guyton, "Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection," Biomed. Opt. Express 2, 1955-1968 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Guyton, D. G. Hunter, S. N. Patel, J. C. Sandruck, and R. L. Fry, “Eye fixation monitor and tracker,” U.S. Patent No. 6,027,216 (Feb. 22, 2000).
  2. D. G. Hunter, S. N. Patel, and D. L. Guyton, “Automated detection of foveal fixation by use of retinal birefringence scanning,” Appl. Opt. 38(7), 1273–1279 (1999). [CrossRef] [PubMed]
  3. L. R. Young and D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Meth. Instrum. 7(5), 397–429 (1975). [CrossRef]
  4. D. G. Hunter, A. S. Shah, S. Sau, D. Nassif, and D. L. Guyton, “Automated detection of ocular alignment with binocular retinal birefringence scanning,” Appl. Opt. 42(16), 3047–3053 (2003). [CrossRef] [PubMed]
  5. D. G. Hunter, D. S. Nassif, N. V. Piskun, R. Winsor, B. I. Gramatikov, and D. L. Guyton, “Pediatric Vision Screener 1: instrument design and operation,” J. Biomed. Opt. 9(6), 1363–1368 (2004). [CrossRef] [PubMed]
  6. K. Irsch, “Polarization modulation using wave plates to enhance foveal fixation detection in retinal birefringence scanning for pediatric vision screening purposes,” Ph.D. thesis (University of Heidelberg, Germany, 2009), http://www.ub.uni-heidelberg.de/archiv/8938/ .
  7. B. I. Gramatikov, O. H. Y. Zalloum, Y. K. Wu, D. G. Hunter, and D. L. Guyton, “Birefringence-based eye fixation monitor with no moving parts,” J. Biomed. Opt. 11(3), 034025 (2006). [CrossRef] [PubMed]
  8. D. S. Nassif, N. V. Piskun, B. I. Gramatikov, D. L. Guyton, and D. G. Hunter, “Pediatric Vision Screener 2: pilot study in adults,” J. Biomed. Opt. 9(6), 1369–1374 (2004). [CrossRef] [PubMed]
  9. D. S. Nassif, N. V. Piskun, and D. G. Hunter, “The Pediatric Vision Screener III: detection of strabismus in children,” Arch. Ophthalmol. 124(4), 509–513 (2006). [CrossRef] [PubMed]
  10. R. W. Knighton and X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002). [PubMed]
  11. R. N. Weinreb, C. Bowd, D. S. Greenfield, and L. M. Zangwill, “Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry,” Arch. Ophthalmol. 120(7), 901–906 (2002). [PubMed]
  12. A. W. Dreher and K. Reiter, “Retinal eye disease diagnostic system,” U.S. Patent No. 5,303,709 (Apr. 19, 1994).
  13. B. C. E. Pelz, C. Weschenmoser, S. Goelz, J. P. Fischer, R. O. W. Burk, and J. F. Bille, “In vivo measurement of the retinal birefringence with regard on corneal effects using an electro-optical ellipsometer,” Proc. SPIE 2930, 92–101 (1996). [CrossRef]
  14. Q. Zhou and R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43(7), 2221–2228 (2002). [PubMed]
  15. Q. Zhou, “System and method for determining birefringence of anterior segment of the patient's eye,” U.S. Patent No. 6,356,036 (March 12, 2002).
  16. R. W. Knighton and X. R. Huang, “Analytical methods for scanning laser polarimetry,” Opt. Express 10(21), 1179–1189 (2002). [PubMed]
  17. Q. Zhou, “Retinal scanning laser polarimetry and methods to compensate for corneal birefringence,” Bull. Soc. Belge Ophtalmol. 302(302), 89–106 (2006). [PubMed]
  18. N. J. Reus, Q. Zhou, and H. G. Lemij, “Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation,” Invest. Ophthalmol. Vis. Sci. 47(9), 3870–3877 (2006). [CrossRef] [PubMed]
  19. D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, and D. L. Guyton, “Mathematical modeling of retinal birefringence scanning,” J. Opt. Soc. Am. A 16(9), 2103–2111 (1999). [CrossRef] [PubMed]
  20. M. C. Müllenbroich, “Design and construction of a fixation stability monitor for diagnosis and management of ADHD,” Master's thesis (University of Heidelberg, Germany, 2006).
  21. F. A. Bettelheim, “On the optical anisotropy of lens fiber cells,” Exp. Eye Res. 21(3), 231–234 (1975). [CrossRef] [PubMed]
  22. R. A. Weale, “Sex, age and the birefringence of the human crystalline lens,” Exp. Eye Res. 29(4), 449–461 (1979). [CrossRef] [PubMed]
  23. H. B. klein Brink, “Birefringence of the human crystalline lens in vivo,” J. Opt. Soc. Am. A 8(11), 1788–1793 (1991). [CrossRef] [PubMed]
  24. G. J. Van Blokland and S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4(1), 82–90 (1987). [CrossRef] [PubMed]
  25. R. W. Knighton, X. R. Huang, and L. A. Cavuoto, “Corneal birefringence mapped by scanning laser polarimetry,” Opt. Express 16(18), 13738–13751 (2008). [CrossRef] [PubMed]
  26. H. B. klein Brink and G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,” J. Opt. Soc. Am. A 5(1), 49–57 (1988). [CrossRef] [PubMed]
  27. G. J. van Blokland, “Ellipsometry of the human retina in vivo: preservation of polarization,” J. Opt. Soc. Am. A 2(1), 72–75 (1985). [CrossRef] [PubMed]
  28. S. N. Patel, “Analysis of foveal birefringence to monitor eye fixation,” Master's thesis (Johns Hopkins University, Baltimore, MD, 1995).
  29. A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992). [CrossRef] [PubMed]
  30. R. W. Knighton, “Spectral dependence of corneal birefringence at visible wavelengths,” Invest. Ophthalmol. Vis. Sci. 43, E-Abstract 152 (2002).
  31. E. Collet, Polarized Light, Fundamentals and Applications (Marcel Dekker, New York, 1993).
  32. K. Irsch, B. I. Gramatikov, Y. K. Wu, and D. L. Guyton, “Spinning wave plate design for retinal birefringence scanning,” Proc. SPIE 7169, 71691F (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited