OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 1986–2004

Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm

Weiyao Zou, Xiaofeng Qi, and Stephen A. Burns  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 1986-2004 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2734 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.1790) Medical optics and biotechnology : Confocal microscopy
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Ophthalmology Applications

Original Manuscript: April 14, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 10, 2011
Published: June 17, 2011

Weiyao Zou, Xiaofeng Qi, and Stephen A. Burns, "Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm," Biomed. Opt. Express 2, 1986-2004 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef] [PubMed]
  2. A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [PubMed]
  3. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef] [PubMed]
  4. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005). [CrossRef] [PubMed]
  5. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006). [CrossRef] [PubMed]
  6. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006). [CrossRef] [PubMed]
  7. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006). [CrossRef] [PubMed]
  8. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  9. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2001), p528
  11. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Intersubject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. 51(12), 6858–6867 (2010). [CrossRef] [PubMed]
  12. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27(7), 1223–1225 (1988). [CrossRef] [PubMed]
  13. R. D. Ferguson, Z. Zhong, D. X. Hammer, M. Mujat, A. H. Patel, C. Deng, W. Zou, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking,” J. Opt. Soc. Am. A 27(11), A265–A277 (2010). [CrossRef] [PubMed]
  14. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006). [CrossRef] [PubMed]
  15. A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008). [CrossRef] [PubMed]
  16. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008). [CrossRef] [PubMed]
  17. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vis. 9(6), 17 (2009). [CrossRef] [PubMed]
  18. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007). [CrossRef] [PubMed]
  20. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007). [CrossRef] [PubMed]
  21. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009). [CrossRef] [PubMed]
  22. W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009). [CrossRef] [PubMed]
  23. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010). [CrossRef] [PubMed]
  24. S. Hu, B. Xu, X. Zhang, J. Hou, J. Wu, and W. Jiang, “Double-deformable-mirror adaptive optics system for phase compensation,” Appl. Opt. 45(12), 2638–2642 (2006). [CrossRef] [PubMed]
  25. T. J. Brennan and T. A. Rhoadarmer, “Performance of a woofer-tweeter deformable mirror control architecture for high-bandwidth, high-spatial resolution adaptive optics,” Proc. SPIE 6306, 63060B, 63060B-12 (2006). [CrossRef]
  26. O. Keskin, P. Hampton, R. Conan, C. Bradley, A. Hilton, and C. Blain, “Woofer-tweeter adaptive optics test bench,” in First NASA/ESA Conference on Adaptive Hardware and Systems (2006), pp.74–80,
  27. R. Conan, C. Bradley, P. Hampton, O. Keskin, A. Hilton, and C. Blain, “Distributed modal command for a two-deformable-mirror adaptive optics system,” Appl. Opt. 46(20), 4329–4340 (2007). [CrossRef] [PubMed]
  28. R. Conan, “Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials,” J. Opt. Soc. Am. A 25(2), 526–536 (2008). [CrossRef] [PubMed]
  29. K. Morzinski, B. Macintosh, D. Gavel, and D. Dillon, “Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics,” Opt. Express 17(7), 5829–5844 (2009). [CrossRef] [PubMed]
  30. J.-F. Lavigne and J.-P. Véran, “Woofer-tweeter control in an adaptive optics system using a Fourier reconstructor,” J. Opt. Soc. Am. A 25(9), 2271–2279 (2008). [CrossRef] [PubMed]
  31. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008). [CrossRef] [PubMed]
  32. Model No. Mirao 52-e, Imagine Eyes, Orsay,France, http://www.imagine-eyes.com .
  33. Model No. µDM140–450-E-AgMgF, Boston MicroMachines Corp., MA, USA, http://www.bostonmicromachines.com .
  34. N. O. Product 0300–7.6-S: Adaptive Optics Associates, Inc., MA, USA, http://www.as.northropgrumman.com/businessventures/aoa/index.html .
  35. N. O. Product UP-1830CL-12B, Uniq Vision, Inc., CA, USA. http://www.uniqvision.com
  36. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).
  37. J. Meiron, “Damped least-squares method for automatic lens design,” J. Opt. Soc. Am. 55(9), 1105–1107 (1965). [CrossRef]
  38. D. Q. Su and Y. N. Wang, “Automatic correction of aberration in astro-optical system,” Acta Astron. Sin. 15(1), 51–60 (1974).
  39. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  40. J. I. Yellott., “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vision Res. 22(9), 1205–1210 (1982). [CrossRef] [PubMed]
  41. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45(8), 1681–1698 (1998). [CrossRef]
  42. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987). [CrossRef] [PubMed]
  43. A. H. Tunnacliffe, Introduction to Visual Optics (Association of British Dispensing Opticians, 1989).
  44. G. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001)., Eq. (1.28).
  45. J. B. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  46. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996). [CrossRef]
  47. Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006). [CrossRef] [PubMed]
  48. V. N. Mahajan, “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73(6), 860–861 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited