OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 2012–2021

Encapsulation of FITC to monitor extracellular pH: a step towards the development of red blood cells as circulating blood analyte biosensors

Sarah C. Ritter, Mark A. Milanick, and Kenith E. Meissner  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 7, pp. 2012-2021 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A need exists for a long-term, minimally-invasive system to monitor blood analytes. For certain analytes, such as glucose in the case of diabetics, a continuous system would help reduce complications. Current methods suffer significant drawbacks, such as low patient compliance for the finger stick test or short lifetime (i.e., 3–7 days) and required calibrations for continuous glucose monitors. Red blood cells (RBCs) are potential biocompatible carriers of sensing assays for long-term monitoring. We demonstrate that RBCs can be loaded with an analyte-sensitive fluorescent dye. In the current study, FITC, a pH-sensitive fluorescent dye, is encapsulated within resealed red cell ghosts. Intracellular FITC reports on extracellular pH: fluorescence intensity increases as extracellular pH increases because the RBC rapidly equilibrates to the pH of the external environment through the chloride-bicarbonate exchanger. The resealed ghost sensors exhibit an excellent ability to reversibly track pH over the physiological pH range with a resolution down to 0.014 pH unit. Dye loading efficiency varies from 30% to 80%. Although complete loading is ideal, it is not necessary, as the fluorescence signal is an integration of all resealed ghosts within the excitation volume. The resealed ghosts could serve as a long-term (>1 to 2 months), continuous, circulating biosensor for the management of diseases, such as diabetes.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: May 2, 2011
Revised Manuscript: June 17, 2011
Manuscript Accepted: June 17, 2011
Published: June 22, 2011

Sarah C. Ritter, Mark A. Milanick, and Kenith E. Meissner, "Encapsulation of FITC to monitor extracellular pH: a step towards the development of red blood cells as circulating blood analyte biosensors," Biomed. Opt. Express 2, 2012-2021 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt. 5(1), 5–16 (2000). [CrossRef] [PubMed]
  2. M. S. D. Agus, J. L. Alexander, and P. A. Mantell, “Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis,” Pediatr. Diabetes 7(4), 196–200 (2006). [CrossRef] [PubMed]
  3. R. B. Easley, T. R. Johnson, and J. D. Tobias, “Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis,” Clin. Pediatr. (Phila.) 41(5), 351–355 (2002). [CrossRef] [PubMed]
  4. E. Garcia, T. J. Abramo, P. Okada, D. D. Guzman, J. S. Reisch, and R. A. Wiebe, “Capnometry for noninvasive continuous monitoring of metabolic status in pediatric diabetic ketoacidosis,” Crit. Care Med. 31(10), 2539–2543 (2003). [CrossRef] [PubMed]
  5. M. E. McBride, J. W. Berkenbosch, and J. D. Tobias, “Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents,” Paediatr. Anaesth. 14(2), 167–171 (2004). [CrossRef] [PubMed]
  6. J. D. Tobias, “Transcutaneous carbon dioxide monitoring in infants and children,” Paediatr. Anaesth. 19(5), 434–444 (2009). [CrossRef] [PubMed]
  7. J. P. Boyle, T. J. Thompson, E. W. Gregg, L. E. Barker, and D. F. Williamson, “Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence,” Popul. Health Metr. 8(1), 29 (2010). [CrossRef] [PubMed]
  8. Centers for Disease Control and Prevention, “2011 National diabetes fact sheet” (U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2011).
  9. UK Prospective Diabetes Study (UKPDS) Group, “Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33),” Lancet 352(9131), 837–853 (1998). [CrossRef] [PubMed]
  10. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” N. Engl. J. Med. 329(14), 977–986 (1993). [CrossRef] [PubMed]
  11. Y. Ohkubo, H. Kishikawa, E. Araki, T. Miyata, S. Isami, S. Motoyoshi, Y. Kojima, N. Furuyoshi, and M. Shichiri, “Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study,” Diabetes Res. Clin. Pract. 28(2), 103–117 (1995). [CrossRef] [PubMed]
  12. U.S. Department of Health and Human Services, National Diabetes Education Program (NDEP). “Know your blood sugar numbers,” National Diabetes Education Program publication NDEP-10 (2005).
  13. American Diabetes Association, “Standards of medical care in diabetes--2011,” Diabetes Care 34(Suppl 1), S11–S61 (2011). [CrossRef] [PubMed]
  14. M. R. Burge, S. Mitchell, A. Sawyer, and D. S. Schade, “Continuous glucose monitoring: the future of diabetes management,” Diabetes Spectrum 21(2), 112–119 (2008). [CrossRef]
  15. J. Wagner, C. Malchoff, and G. Abbott, “Invasiveness as a barrier to self-monitoring of blood glucose in diabetes,” Diabetes Technol. Ther. 7(4), 612–619 (2005). [CrossRef] [PubMed]
  16. G. McGarraugh, “The chemistry of commercial continuous glucose monitors,” Diabetes Technol. Ther. 11(s1Suppl 1), S17–S24 (2009). [CrossRef] [PubMed]
  17. I. Torres, M. G. Baena, M. Cayon, J. Ortego-Rojo, and M. Aguilar-Diosdado, “Use of sensors in the treatment and follow-up of patients with diabetes mellitus,” Sensors (Basel Switzerland) 10(8), 7404–7420 (2010). [CrossRef]
  18. T. Aye, J. Block, and B. Buckingham, “Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems,” Endocrinol. Metab. Clin. North Am. 39(3), 609–624 (2010). [CrossRef] [PubMed]
  19. H. Hanaire, “Continuous glucose monitoring and external insulin pump: towards a subcutaneous closed loop,” Diabetes Metab. 32(5), 534–538 (2006). [CrossRef] [PubMed]
  20. C. Wei, D. J. Lunn, C. L. Acerini, J. M. Allen, A. M. Larsen, M. E. Wilinska, D. B. Dunger, and R. Hovorka, “Measurement delay associated with the Guardian RT continuous glucose monitoring system,” Diabet. Med. 27(1), 117–122 (2010). [CrossRef] [PubMed]
  21. N. Wisniewski, F. Moussy, and W. M. Reichert, ““Characterization of implantable biosensor membrane biofouling,” Fresenius',” J. Anal. Chem. 366, 611–621 (2000).
  22. G. Voskerician and J. Anderson, “Sensor Biocompatibility and Biofouling in Real-Time Monitoring,” in Wiley Encyclopedia of Biomedical Engineering, (John Wiley & Sons, Inc., 2006).
  23. M. Hamidi and H. Tajerzadeh, “Carrier erythrocytes: an overview,” Drug Deliv. 10(1), 9–20 (2003). [CrossRef] [PubMed]
  24. G. Schwoch and H. Passow, “Preparation and properties of human erythrocyte ghosts,” Mol. Cell. Biochem. 2(2), 197–218 (1973). [CrossRef] [PubMed]
  25. J. R. Deloach, “Carrier erythrocytes,” Med. Res. Rev. 6(4), 487–504 (1986). [CrossRef] [PubMed]
  26. G. M. Ihler and H. C.-W. Tsang, “Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes,” Methods Enzymol. 149, 221–229 (1987). [CrossRef] [PubMed]
  27. F. Pierigè, S. Serafini, L. Rossi, and M. Magnani, “Cell-based drug delivery,” Adv. Drug Deliv. Rev. 60(2), 286–295 (2008). [CrossRef] [PubMed]
  28. P. Seeman, “Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin,” J. Cell Biol. 32(1), 55–70 (1967). [CrossRef] [PubMed]
  29. L. Rossi, S. Serafini, F. Pierigé, A. Antonelli, A. Cerasi, A. Fraternale, L. Chiarantini, and M. Magnani, “Erythrocyte-based drug delivery,” Expert Opin. Drug Deliv. 2(2), 311–322 (2005). [CrossRef] [PubMed]
  30. C. G. Millán, M. L. Marinero, A. Z. Castañeda, and J. M. Lanao, “Drug, enzyme and peptide delivery using erythrocytes as carriers,” J. Control. Release 95(1), 27–49 (2004). [CrossRef] [PubMed]
  31. M. Magnani, L. Rossi, A. Fraternale, M. Bianchi, A. Antonelli, R. Crinelli, and L. Chiarantini, “Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides,” Gene Ther. 9(11), 749–751 (2002). [CrossRef] [PubMed]
  32. B. E. Bax, M. D. Bain, P. J. Talbot, E. J. Parker-Williams, and R. A. Chalmers, “Survival of human carrier erythrocytes in vivo,” Clin. Sci. 96(2), 171–178 (1999). [CrossRef] [PubMed]
  33. R. A. Schlegel, K. Lumley-Sapanski, and P. Williamson, “Single cell analysis of factors increasing the survival of resealed erythrocytes in the circulation of mice,” Adv. Exp. Med. Biol. 326, 133–138 (1992). [PubMed]
  34. G. Gardos, “Akkumulation de kalium onen durch menschiche Blutkorperchen,” Acta Physiol. Acad. Sci. Hung. 6, 191–196 (1953).
  35. N. V. B. Marsden and S. G. Ostling, “Accumulation of dextran in human red cells after haemolysis,” Nature 184(4687Suppl 10), 723–724 (1959). [CrossRef] [PubMed]
  36. G. M. Ihler, R. H. Glew, and F. W. Schnure, “Enzyme loading of erythrocytes,” Proc. Natl. Acad. Sci. U.S.A. 70(9), 2663–2666 (1973). [CrossRef] [PubMed]
  37. U. Zimmerman, “Jahresbericht der kernforschungsanlage Jülich GmbH” (Nuclear Research Center, Jülich, 1973), pp. 55–58.
  38. M. Hamidi, A. Zarrin, M. Foroozesh, and S. Mohammadi-Samani, “Applications of carrier erythrocytes in delivery of biopharmaceuticals,” J. Control. Release 118(2), 145–160 (2007). [CrossRef] [PubMed]
  39. R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008). [CrossRef] [PubMed]
  40. R. Azoui, J. L. Cuche, J. F. Renaud, M. Safar, and G. Dagher, “A dopamine transporter in human erythrocytes: modulation by insulin,” Exp. Physiol. 81(3), 421–434 (1996). [PubMed]
  41. A. Carruthers, “Facilitated diffusion of glucose,” Physiol. Rev. 70(4), 1135–1176 (1990). [PubMed]
  42. P. G. LeFevre, “Evidence of active transfer of certain non-electrolytes across the human red cell membrane,” J. Gen. Physiol. 31(6), 505–527 (1948). [CrossRef] [PubMed]
  43. O. Fröhlich and R. B. Gunn, “Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system,” Biochim Biophys Acta. 864, 169–194 (1986).
  44. J. Funder and J. O. Wieth, “Chloride transport in human erythrocytes and ghosts: a quantitative comparison,” J. Physiol. 262(3), 679–698 (1976). [PubMed]
  45. H. Cao and M. D. Heagy, “Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review,” J. Fluoresc. 14(5), 569–584 (2004). [CrossRef] [PubMed]
  46. H. Fang, G. Kaur, and B. Wang, “Progress in boronic acid-based fluorescent glucose sensors,” J. Fluoresc. 14(5), 481–489 (2004). [CrossRef] [PubMed]
  47. P. S. B. Center, Donating Platelets, http://www.psbc.org/programs/platelets.htm .
  48. P. K. Gasbjerg, P. A. Knauf, and J. Brahm, “Kinetics of bicarbonate transport in human red blood cell membranes at body temperature,” J. Gen. Physiol. 108(6), 565–575 (1996). [CrossRef] [PubMed]
  49. H. Bodemann and H. Passow, “Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis,” J. Membr. Biol. 8(1), 1–26 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited