OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 2022–2034

Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry

Stephan Jonas, Dipankan Bhattacharya, Mustafa K. Khokha, and Michael A. Choma  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 7, pp. 2022-2034 (2011)
http://dx.doi.org/10.1364/BOE.2.002022


View Full Text Article

Enhanced HTML    Acrobat PDF (2086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Motile cilia are cellular organelles that generate directional fluid flow across various epithelial surfaces including the embryonic node and respiratory mucosa. The proper functioning of cilia is necessary for normal embryo development and, for the respiratory system, the clearance of mucus and potentially harmful particulate matter. Here we show that optical coherence tomography (OCT) is well-suited for quantitatively characterizing the microfluidic-scale flow generated by motile cilia. Our imaging focuses on the ciliated epithelium of Xenopus tropicalis embryos, a genetically manipulable and experimentally tractable animal model of human disease. We show qualitative flow profile characterization using OCT-based particle pathline imaging. We show quantitative, two-dimensional, two-component flow velocity field characterization using OCT-based particle tracking velocimetry. Quantitative imaging and phenotyping of cilia-driven fluid flow using OCT will enable more detailed research in ciliary biology and in respiratory medicine.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(280.2490) Remote sensing and sensors : Flow diagnostics
(110.4153) Imaging systems : Motion estimation and optical flow

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: May 17, 2011
Revised Manuscript: June 16, 2011
Manuscript Accepted: June 19, 2011
Published: June 22, 2011

Citation
Stephan Jonas, Dipankan Bhattacharya, Mustafa K. Khokha, and Michael A. Choma, "Microfluidic characterization of cilia-driven fluid flow using optical coherence tomography-based particle tracking velocimetry," Biomed. Opt. Express 2, 2022-2034 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-7-2022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Berg, Random Walks in Biology, revised ed. (Princeton University Press, 1993).
  2. Y. Okada, S. Takeda, Y. Tanaka, J. C. I. Belmonte, and N. Hirokawa, “Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination,” Cell 121(4), 633–644 (2005). [CrossRef] [PubMed]
  3. B. Mitchell, R. Jacobs, J. Li, S. Chien, and C. Kintner, “A positive feedback mechanism governs the polarity and motion of motile cilia,” Nature 447(7140), 97–101 (2007). [CrossRef] [PubMed]
  4. F. Miskevich, “Imaging fluid flow and cilia beating pattern in Xenopus brain ventricles,” J. Neurosci. Methods 189(1), 1–4 (2010). [CrossRef] [PubMed]
  5. B. Guirao, A. Meunier, S. Mortaud, A. Aguilar, J. M. Corsi, L. Strehl, Y. Hirota, A. Desoeuvre, C. Boutin, Y. G. Han, Z. Mirzadeh, H. Cremer, M. Montcouquiol, K. Sawamoto, and N. Spassky, “Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia,” Nat. Cell Biol. 12(4), 341–350 (2010). [CrossRef] [PubMed]
  6. J. R. Colantonio, J. Vermot, D. Wu, A. D. Langenbacher, S. Fraser, J. N. Chen, and K. L. Hill, “The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear,” Nature 457(7226), 205–209 (2009). [CrossRef] [PubMed]
  7. A. G. Kramer-Zucker, F. Olale, C. J. Haycraft, B. K. Yoder, A. F. Schier, and I. A. Drummond, “Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis,” Development 132(8), 1907–1921 (2005). [CrossRef] [PubMed]
  8. K. Baker and P. L. Beales, “Making sense of cilia in disease: the human ciliopathies,” Am. J. Med. Genet. C. Semin. Med. Genet. 151C(4), 281–295 (2009). [CrossRef] [PubMed]
  9. K. Sawamoto, H. Wichterle, O. Gonzalez-Perez, J. A. Cholfin, M. Yamada, N. Spassky, N. S. Murcia, J. M. Garcia-Verdugo, O. Marin, J. L. R. Rubenstein, M. Tessier-Lavigne, H. Okano, and A. Alvarez-Buylla, “New neurons follow the flow of cerebrospinal fluid in the adult brain,” Science 311(5761), 629–632 (2006). [CrossRef] [PubMed]
  10. R. A. Lyons, E. Saridogan, and O. Djahanbakhch, “The reproductive significance of human Fallopian tube cilia,” Hum. Reprod. Update 12(4), 363–372 (2006). [CrossRef] [PubMed]
  11. H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech. 36(1), 381–411 (2004). [CrossRef]
  12. A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning electro-osmotic flow with patterned surface charge,” Phys. Rev. Lett. 84(15), 3314–3317 (2000). [CrossRef] [PubMed]
  13. B. Guirao and J. F. Joanny, “Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia,” Biophys. J. 92(6), 1900–1917 (2007). [CrossRef] [PubMed]
  14. B. Mitchell, J. L. Stubbs, F. Huisman, P. Taborek, C. Yu, and C. Kintner, “The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin,” Curr. Biol. 19(11), 924–929 (2009). [CrossRef] [PubMed]
  15. R. J. Francis, B. Chatterjee, N. T. Loges, H. Zentgraf, H. Omran, and C. W. Lo, “Initiation and maturation of cilia-generated flow in newborn and postnatal mouse airway,” Am. J. Physiol. Lung Cell. Mol. Physiol. 296(6), L1067–L1075 (2009). [CrossRef] [PubMed]
  16. K. Ikegami, S. Sato, K. Nakamura, L. E. Ostrowski, and M. Setou, “Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10490–10495 (2010). [CrossRef] [PubMed]
  17. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996). [CrossRef]
  18. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1017–1028 (1996). [CrossRef]
  19. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  20. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  21. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, “Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy,” J. Biomed. Opt. 11(2), 024014 (2006). [CrossRef] [PubMed]
  22. A. V. Bykov, A. V. Priezzhev, J. Lauri, and R. Myllylä, “Doppler OCT imaging of cytoplasm shuttle flow in Physarum polycephalum,” J Biophotonics 2(8-9), 540–547 (2009). [CrossRef] [PubMed]
  23. M. A. Choma, M. J. Suter, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems,” Dis Model Mech 4(3), 411–420 (2011). [CrossRef] [PubMed]
  24. C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 101(20), 7516–7521 (2004). [CrossRef] [PubMed]
  25. Y. C. Ahn, W. G. Jung, and Z. P. Chen, “Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel,” Lab Chip 8(1), 125–133 (2008). [CrossRef] [PubMed]
  26. M. Baltussen, P. Anderson, F. Bos, and J. den Toonder, “Inertial flow effects in a micro-mixer based on artificial cilia,” Lab Chip 9(16), 2326–2331 (2009). [CrossRef] [PubMed]
  27. C. J. Pedersen, D. Huang, M. A. Shure, and A. M. Rollins, “Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography,” Opt. Lett. 32(5), 506–508 (2007). [CrossRef] [PubMed]
  28. Y. C. Ahn, W. Jung, and Z. P. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett. 32(11), 1587–1589 (2007). [CrossRef] [PubMed]
  29. S. Makita, T. Fabritius, and Y. Yasuno, “Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography,” Opt. Lett. 33(8), 836–838 (2008). [CrossRef] [PubMed]
  30. A. Davis, J. Izatt, and F. Rothenberg, “Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry,” Anat. Rec. (Hoboken) 292(3), 311–319 (2009). [CrossRef] [PubMed]
  31. Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express 1(3), 798–811 (2010). [CrossRef] [PubMed]
  32. A. S. G. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express 1(4), 1047–1058 (2010). [CrossRef] [PubMed]
  33. R. J. Adrian, “Particle-imaging techniques for experimental fluid-mechanics,” Annu. Rev. Fluid Mech. 23(1), 261–304 (1991). [CrossRef]
  34. F. Pereira, H. Stuer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17(7), 1680–1692 (2006). [CrossRef]
  35. S. J. Lee and S. Kim, “Advanced particle-based velocimetry techniques for microscale flows,” Microfluidics Nanofluidics 6(5), 577–588 (2009). [CrossRef]
  36. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, “Introduction,” in Particle Image Velocimetry, 2nd ed. (Springer, New York, 2007).
  37. F. S. Billett and R. P. Gould, “Fine structural changes in the differentiating epidermis of Xenopus laevis embryos,” J. Anat. 108(Pt 3), 465–480 (1971). [PubMed]
  38. M. K. Khokha, C. Chung, E. L. Bustamante, L. W. Gaw, K. A. Trott, J. Yeh, N. Lim, J. C. Lin, N. Taverner, E. Amaya, N. Papalopulu, J. C. Smith, A. M. Zorn, R. M. Harland, and T. C. Grammer, “Techniques and probes for the study of Xenopus tropicalis development,” Dev. Dyn. 225(4), 499–510 (2002). [CrossRef] [PubMed]
  39. A. Patwardhan, “Subpixel position measurement using 1D, 2D and 3D centroid algorithms with emphasis on applications in confocal microscopy,” J. Microsc. (Oxford) 186(3), 246–257 (1997). [CrossRef]
  40. J. L. Semmlow, “Image Segmentation,” in Biosignal and Medical Image Processing (Marcel Dekker, Inc., New York, 2004).
  41. L. Lovasz and M. D. Plummer, Matching Theory (Elsevier Science Ltd, Amsterdam, 1986).
  42. L. A. N. Laboratory, “NetworkX Developer Zone” (2011), http://networkx.lanl.gov/trac .
  43. B. J. McKeon, G. v. Comte-Bellot, J. F. Foss, J. Westerweel, F. Scarano, C. Tropea, J. F. Meyers, J. W. Lee, A. A. Cavone, R. Schodl, M. M. Koochesfahani, D. G. Nocera, Y. Andreopoulos, W. J. A. Dahm, J. A. Mullin, J. M. Wallace, P. V. Vukoslavcevic, S. C. Morris, E. R. Pardyjak, and A. Cuerva, “Velocity, vorticity, and Mach number,” in Springer Handbook of Experimental Fluid Mechanics, C. Tropea, A. L. Yarin, and J. F. Foss, eds. (Springer-Verlag, Berlin, 2007), p. 288.
  44. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett. 23(5), 319–321 (1998). [CrossRef] [PubMed]
  45. K. Oh, B. Smith, S. Devasia, J. J. Riley, and J. H. Chung, “Characterization of mixing performance for bio-mimetic silicone cilia,” Microfluidics Nanofluidics 9(4-5), 645–655 (2010). [CrossRef]
  46. H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007). [CrossRef] [PubMed]
  47. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett. 33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  48. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature 421(6919), 172–177 (2003). [CrossRef] [PubMed]
  49. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008). [CrossRef] [PubMed]
  50. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15(6), 066022 (2010). [CrossRef] [PubMed]
  51. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (9519 KB)      QuickTime
» Media 2: MOV (994 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited