OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 7 — Jul. 1, 2011
  • pp: 2047–2054

Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels

Stefan A. Carp, Nadàege Roche-Labarbe, Maria-Angela Franceschini, Vivek J. Srinivasan, Sava Sakadžić, and David A. Boas  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 7, pp. 2047-2054 (2011)
http://dx.doi.org/10.1364/BOE.2.002047


View Full Text Article

Enhanced HTML    Acrobat PDF (685 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest that Diffuse Correlation Spectroscopy (DCS) measurements of tissue blood flow primarily probe relative red blood cell (RBC) motion, due to the occurrence of multiple sequential scattering events within blood vessels. The magnitude of RBC shear-induced diffusion is known to correlate with flow velocity, explaining previous reports of linear scaling of the DCS “blood flow index” with tissue perfusion despite the observed diffusion-like auto-correlation decay. Further, by modeling RBC mean square displacement using a formulation that captures the transition from ballistic to diffusive motion, we improve the fit to experimental data and recover effective diffusion coefficients and velocity de-correlation time scales in the range expected from previous blood rheology studies.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: April 4, 2011
Revised Manuscript: June 13, 2011
Manuscript Accepted: June 17, 2011
Published: June 24, 2011

Citation
Stefan A. Carp, Nadàege Roche-Labarbe, Maria-Angela Franceschini, Vivek J. Srinivasan, Sava Sakadžić, and David A. Boas, "Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels," Biomed. Opt. Express 2, 2047-2054 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-7-2047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering : with Applications to Chemistry, Biology, and Physics , Dover Ed. (Dover Publications, 2000).
  2. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988). [CrossRef] [PubMed]
  3. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995). [CrossRef] [PubMed]
  4. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192–215 (1997). [CrossRef]
  5. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053–2065 (2001). [CrossRef] [PubMed]
  6. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15, 037004 (2010). [CrossRef] [PubMed]
  7. S. A. Carp, G. P. Dai, D. A. Boas, M. A. Franceschini, and Y. R. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express 1, 553–565 (2010). [CrossRef]
  8. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, “Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI,” Opt. Express 15, 1064–1075 (2007). [CrossRef] [PubMed]
  9. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17, 12571–12581 (2009). [CrossRef] [PubMed]
  10. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life,” Human Brain Mapp. 31, 341–352 (2009). [CrossRef]
  11. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocritical Care 12, 173–180 (2010). [CrossRef]
  12. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14, 034015 (2009). [CrossRef] [PubMed]
  13. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981). [CrossRef] [PubMed]
  14. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt. 46, 8506–8514 (2007). [CrossRef] [PubMed]
  15. M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1, 1502–1513 (2010). [CrossRef]
  16. H. L. Goldsmith and J. Marlow, “Flow behavior of erythrocytes: II. particle motions in concentrated suspensions of ghost cells,” J. Colloid Interface Sci. 71, 383–407 (1979). [CrossRef]
  17. T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010). [CrossRef]
  18. M. Meinke, G. Muller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46, 1742–1753 (2007). [CrossRef] [PubMed]
  19. C. Desjardins and B. R. Duling, “Microvessel hematocrit–measurement and implications for capillary oxygen-transport,” Am. J. Physiol. 252, H494–H503 (1987).
  20. T. Q. Duong and S. G. Kim, “In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain,” Magn. Res. Med. 43, 393–402 (2000). [CrossRef]
  21. J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, “Statistical dynamics of flowing red blood cells by morphological image processing,” PLOS Comput. Biol. 5, e1000288 (2009). [CrossRef] [PubMed]
  22. J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules,” Am. J. Physiol. Heart Circ. Physiol. 283, H1985–H1996 (2002).
  23. A. G. Hudetz, “Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy,” Microcirculation 4, 233–252 (1997). [CrossRef] [PubMed]
  24. S. Roldan-Vargas, M. Pelaez-Fernandez, R. Barnadas-Rodriguez, M. Quesada-Perez, J. Estelrich, and J. Callejas-Fernandez, “Nondiffusive Brownian motion of deformable particles: breakdown of the “long-time tail”,” Phys. Rev. E 80, 021403 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited