OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 8 — Aug. 1, 2011
  • pp: 2083–2095

Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells

Zoran Arsov, Iztok Urbančič, Maja Garvas, Daniele Biglino, Ajasja Ljubetič, Tilen Koklič, and Janez Štrancar  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 8, pp. 2083-2095 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1794 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lack of better understanding of nanoparticles targeted delivery into cancer cells calls for advanced optical microscopy methodologies. Here we present a development of fluorescence microspectroscopy (spectral imaging) based on a white light spinning disk confocal microscope with emission wavelength selection by a liquid crystal tunable filter. Spectral contrasting of images was used to localize polymer nanoparticles and cell membranes labeled with fluorophores that have substantially overlapping spectra. In addition, fluorescence microspectroscopy enabled spatially-resolved detection of small but significant effects of local molecular environment on the properties of environment-sensitive fluorescent probe. The observed spectral shift suggests that the delivery of suitably composed cancerostatic alkylphospholipid nanoparticles into living cancer cells might rely on the fusion with plasma cell membrane.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:

Original Manuscript: April 21, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 27, 2011
Published: June 29, 2011

Zoran Arsov, Iztok Urbančič, Maja Garvas, Daniele Biglino, Ajasja Ljubetič, Tilen Koklič, and Janez Štrancar, "Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells," Biomed. Opt. Express 2, 2083-2095 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Loomis, K. McNeeley, and R. V. Bellamkonda, “Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications,” Soft Matter 7(3), 839–856 (2011). [CrossRef]
  2. V. Torchilin, “Tumor delivery of macromolecular drugs based on the EPR effect,” Adv. Drug Deliv. Rev. 63(3), 131–135 (2011). [CrossRef] [PubMed]
  3. C. Oberle, U. Massing, and H. F. Krug, “On the mechanism of alkylphosphocholine (APC)-induced apoptosis in tumour cells,” Biol. Chem. 386(3), 237–245 (2005). [CrossRef] [PubMed]
  4. T. Koklič, R. Zeisig, and M. Šentjurc, “Interaction of alkylphospholipid liposomes with MT-3 breast-cancer cells depends critically on cholesterol concentration,” Biochim. Biophys. Acta 1778(12), 2682–2689 (2008). [CrossRef] [PubMed]
  5. J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005). [CrossRef] [PubMed]
  6. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [CrossRef] [PubMed]
  7. M. Eisenstein, “Something to see,” Nature 443(7114), 1017–1021 (2006). [PubMed]
  8. M. Baker, “Laser tricks without labels,” Nat. Methods 7(4), 261–266 (2010). [CrossRef] [PubMed]
  9. M. Hintersteiner and M. Auer, “Single-bead, single-molecule, single-cell fluorescence: technologies for drug screening and target validation,” Ann. N. Y. Acad. Sci. 1130(1), 1–11 (2008). [CrossRef] [PubMed]
  10. I.-H. Kim, A. Järve, M. Hirsch, R. Fischer, M. F. Trendelenburg, U. Massing, K. Rohr, and M. Helm, “FRET imaging of cells transfected with siRNA/liposome complexes,” Methods Mol. Biol. 606, 439–455 (2010). [CrossRef] [PubMed]
  11. G. Zacharakis, R. Favicchio, M. Simantiraki, and J. Ripoll, “Spectroscopic detection improves multi-color quantification in fluorescence tomography,” Biomed. Opt. Express 2(3), 431–439 (2011). [PubMed]
  12. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005). [PubMed]
  13. D. Toomre and J. B. Pawley, “Disk-scanning confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, New York, 2006).
  14. S. Pajk, M. Garvas, J. Štrancar, and S. Pečar, “Nitroxide-fluorophore double probes: a potential tool for studying membrane heterogeneity by ESR and fluorescence,” Org. Biomol. Chem. 9(11), 4150–4159 (2011). [CrossRef] [PubMed]
  15. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001). [CrossRef] [PubMed]
  16. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: Acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48(7), 857–866 (1994). [CrossRef]
  17. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002). [CrossRef] [PubMed]
  18. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [CrossRef] [PubMed]
  19. R. M. Zucker, P. Rigby, I. Clements, W. Salmon, and M. Chua, “Reliability of confocal microscopy spectral imaging systems: use of multispectral beads,” Cytometry A 71A(3), 174–189 (2007). [CrossRef] [PubMed]
  20. R. Zeisig, D. Arndt, R. Stahn, and I. Fichtner, “Physical properties and pharmacological activity in vitro and in vivo of optimised liposomes prepared from a new cancerostatic alkylphospholipid,” Biochim. Biophys. Acta 1414(1-2), 238–248 (1998). [CrossRef] [PubMed]
  21. R. M. Levenson and J. R. Mansfield, “Multispectral imaging in biology and medicine: slices of life,” Cytometry A 69A(8), 748–758 (2006). [CrossRef] [PubMed]
  22. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007). [CrossRef] [PubMed]
  23. M. E. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. E. Fraser, “Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy,” Biotechniques 31(6), 1272–1278, 1274–1276, 1278 (2001). [PubMed]
  24. J. M. Lerner, N. Gat, and E. Wachman, “Approaches to spectral imaging hardware,” Curr. Protoc. Cytom. 53, 12.20.1–12.20.40 (2010). [PubMed]
  25. T. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. U.S.A. 93(7), 2926–2929 (1996). [CrossRef] [PubMed]
  26. R. F. M. de Almeida, J. W. Borst, A. Fedorov, M. Prieto, and A. J. W. G. Visser, “Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence,” Biophys. J. 93(2), 539–553 (2007). [CrossRef] [PubMed]
  27. A. Esposito, A. N. Bader, S. C. Schlachter, D. J. van den Heuvel, G. S. Schierle, A. R. Venkitaraman, C. F. Kaminski, and H. C. Gerritsen, “Design and application of a confocal microscope for spectrally resolved anisotropy imaging,” Opt. Express 19(3), 2546–2555 (2011). [CrossRef] [PubMed]
  28. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 245–265 (2005). [PubMed]
  29. A. Orthmann, R. Zeisig, T. Koklič, M. Šentjurc, B. Wiesner, M. Lemm, and I. Fichtner, “Impact of membrane properties on uptake and transcytosis of colloidal nanocarriers across an epithelial cell barrier model,” J. Pharm. Sci. 99(5), 2423–2433 (2010). [PubMed]
  30. A. P. Demchenko, Y. Mély, G. Duportail, and A. S. Klymchenko, “Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes,” Biophys. J. 96(9), 3461–3470 (2009). [CrossRef] [PubMed]
  31. D. A. Erilov, R. Bartucci, R. Guzzi, A. A. Shubin, A. G. Maryasov, D. Marsh, S. A. Dzuba, and L. Sportelli, “Water concentration profiles in membranes measured by ESEEM of spin-labeled lipids,” J. Phys. Chem. B 109(24), 12003–12013 (2005). [CrossRef] [PubMed]
  32. H. M. Kim, H.-J. Choo, S.-Y. Jung, Y.-G. Ko, W.-H. Park, S.-J. Jeon, C. H. Kim, T. Joo, and B. R. Cho, “A two-photon fluorescent probe for lipid raft imaging: C-laurdan,” ChemBioChem 8(5), 553–559 (2007). [CrossRef] [PubMed]
  33. L. A. Bagatolli and E. Gratton, “A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study,” Biophys. J. 79(1), 434–447 (2000). [CrossRef] [PubMed]
  34. E. Munnier, S. Cohen-Jonathan, K. Herve, C. Linassier, M. Souce, P. Dubois, and I. Chourpa, “Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity,” J. Nanopart. Res. 13(3), 959–971 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited